NASA funds astrobiology research by Delaware Biotechnology Institute scientist
Does life exist anywhere else in the universe? That’s the type of broad but poignant question NASA likes to ask, according to Chandran Sabanayagam, associate scientist in the Bioimaging Center at the Delaware Biotechnology Institute (DBI). And he would know, because he’s preparing to help answer it.
NASA will receive $100 billion from the federal government over the next five years to assure America is number one in space exploration, according to Astrobiology.com. As part of its push to seek new partnerships and broaden its vision, NASA is offering grants to people conducting transformational science. With this opportunity, Sabanayagam is merging his love of physics and biology. (more…)
Initial results in mice could lead to new way to fight neurodegenerative diseases
There’s new hope in the fight against Huntington’s disease. A group of researchers that includes scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a compound that suppresses symptoms of the devastating disease in mice.
The compound is a synthetic antioxidant that targets mitochondria, an organelle within cells that serves as a cell’s power plant. Oxidative damage to mitochondria is implicated in many neurodegenerative diseases including Alzheimer’s, Parkinson’s, and Huntington’s. (more…)
Researchers seek better ways to diagnose, treat disorder
Tania Roth studies what happens to the brain when stress occurs early in life, seeking to pinpoint how those kinds of bad experiences can cause molecular changes to DNA.
Now, by participating in a national consortium of researchers, the assistant professor of psychology at the University of Delaware is hoping to use her expertise to contribute to a better understanding of posttraumatic stress disorder (PTSD). (more…)
A team of researchers from North Carolina State University and the Palo Alto Research Center (PARC) has found more evidence for the preservation of ancient dinosaur proteins, including reactivity to antibodies that target specific proteins normally found in bone cells of vertebrates. These results further rule out sample contamination, and help solidify the case for preservation of cells – and possibly DNA – in ancient remains.
Dr. Mary Schweitzer, professor of marine, earth and atmospheric sciences with a joint appointment at the North Carolina Museum of Natural Sciences, first discovered what appeared to be preserved soft tissue in a 67-million-year-old Tyrannosaurus Rex in 2005. Subsequent research revealed similar preservation in an even older (about 80-million-year-old)Brachylophosaurus canadensis. In 2007 and again in 2009, Schweitzer and colleagues used chemical and molecular analyses to confirm that the fibrous material collected from the specimens was collagen. (more…)
COLUMBUS, Ohio – Taking enough omega-3 fatty acid supplements to change the balance of oils in the diet could slow a key biological process linked to aging, new research suggests.
The study showed that most overweight but healthy middle-aged and older adults who took omega-3 supplements for four months altered a ratio of their fatty acid consumption in a way that helped preserve tiny segments of DNA in their white blood cells. (more…)
A current focus in global health research is to make medical tests that are not just cheap, but virtually free. One such strategy is to start with paper – one of humanity’s oldest technologies – and build a device like a home-based pregnancy test that might work for malaria, diabetes or other diseases.
A University of Washington bioengineer recently developed a way to make regular paper stick to medically interesting molecules. The work produced a chemical trick to make paper-based diagnostics using plain paper, the kind found at office supply stores around the world. (more…)
TeselaGen’s DNA construction technology makes genetic engineering cheaper and faster.
Sequencing, splicing and expressing DNA may seem to be the quintessence of cutting-edge science—indeed DNA manipulation has revolutionized fields such as biofuels, chemicals and medicine. But in fact, the actual process can still be tedious and labor-intensive, something Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Nathan Hillson learned the hard way.
After struggling for two days to design a protocol to put together a genetic circuit with 10 pieces of DNA—using a spreadsheet as his primary tool—he was dismayed to discover that an outside company could have done the whole thing, including parts and labor, for lower cost than him ordering the oligonucleotides himself. “I learned two things: one, I never wanted to go through that process again, and two, it’s extremely important to do the cost-effectiveness calculation,” said Hillson, a biochemist who also directs the synthetic biology program at the Berkeley Lab-led Joint BioEnergy Institute (JBEI). “So that was the genesis of the j5 software. This is the perfect thing to teach a computer to do.” (more…)
International team of scientists finds adaptations to stress in oyster genome
When it comes to stress, oysters know how to deal. The tough-shelled mollusks can survive temperature fluctuations, toxic metals and exposure to air, and a new study of their genetic makeup is helping to explain how.
An international team of scientists, including the University of Delaware’s Patrick M. Gaffney, professor of marine biosciences, sequenced the genome of the Pacific oyster, Crassostrea gigas, in a Naturepaper published on Sept. 19. (more…)