Tag Archives: molecules

Seeing Atoms and Molecules in Action with an Electron ‘Eye’

Berkeley Lab’s HiRES to provide new views of material changes, chemical reactions

A unique rapid-fire electron source—originally built as a prototype for driving next-generation X-ray lasers—will help scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) study ultrafast chemical processes and changes in materials at the atomic scale. This could provide new insight in how to make materials with custom, controllable properties and improve the efficiency and output of chemical reactions. (more…)

Read More

Chemists turn key to new energy future

U chemists explain new reaction, demonstrating how quantum mechanics can help design more energy-efficient catalysts.

You’ve probably worn polyester clothes, and you’ve certainly used plenty of plastic objects and paint. But did you know that they come from natural gas?

The main component of natural gas, methane, has just one carbon atom and is the smallest fossil fuel. But as the ultimate source material for the above products and many others it packs an enormous punch. First, however, it must be converted to methanol, an alcohol—and there lies the challenge. (more…)

Read More

Clever chemistry and a new class of antibiotics

A new class of molecules called acyldepsipeptides — ADEPs — may provide a new way to attack bacteria that have developed resistance to antibiotics. Researchers at Brown and MIT have discovered a way to increase the potency of ADEPs by up to 1,200 times. Their findings appear in the Journal of the American Chemical Society.

PROVIDENCE, R.I. [Brown University] — As concerns about bacterial resistance to antibiotics grow, researchers are racing to find new kinds of drugs to replace ones that are no longer effective. One promising new class of molecules called acyldepsipeptides — ADEPs — kills bacteria in a way that no marketed antibacterial drug does — by altering the pathway through which cells rid themselves of harmful proteins. (more…)

Read More

MU Researchers Develop Advanced Three-Dimensional “Force Microscope”

Innovation could lead to faster drug therapies and increased understanding of proteins on the microscopic level

COLUMBIA, Mo. – Membrane proteins are the “gatekeepers” that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of “force microscopes” that are available to researchers and the one-dimensional results these microscopes reveal. Now, researchers at the University of Missouri have developed a three-dimensional microscope that will yield unparalleled study of membrane proteins and how they interact on the cellular level. These microscopes could help pharmaceutical companies bring drugs to market faster. (more…)

Read More

An Inside Look at a MOF in Action

Berkeley Lab Researchers Probe Into Electronic Structure of MOF May Lead to Improved Capturing of Greenhouse Gases

A unique inside look at the electronic structure of a highly touted metal-organic framework (MOF) as it is adsorbing carbon dioxide gas should help in the design of new and improved MOFs for carbon capture and storage. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have recorded the first in situ electronic structure observations of the adsorption of carbon dioxide inside Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising strategies for capturing and storing greenhouse gases. (more…)

Read More

Redwood trees reveal history of West Coast rain, fog, ocean conditions

Many people use tree ring records to see into the past. But redwoods – the iconic trees that are the world’s tallest living things – have so far proven too erratic in their growth patterns to help with reconstructing historic climate.

A University of Washington researcher has developed a way to use the trees as a window into coastal conditions, using oxygen and carbon atoms in the wood to detect fog and rainfall in previous seasons. (more…)

Read More

Researchers Find New Way to Create ‘Gradients’ for Understanding Molecular Interactions

Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers from North Carolina State University have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior.

A gradient is a material that has a specific molecule on its surface, with the concentration of the molecule sloping from a high concentration on one end to a low concentration at the other end. The gradient is used not only to determine whether other molecules interact with the molecules on the gradient, but to determine the threshold level at which any interactions take place. (more…)

Read More

New Technique May Open Up an Era of Atomic-scale Semiconductor Devices

Researchers at North Carolina State University have developed a new technique for creating high-quality semiconductor thin films at the atomic scale – meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

“This could be used to scale current semiconductor technologies down to the atomic scale – lasers, light-emitting diodes (LEDs), computer chips, anything,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper on the work. “People have been talking about this concept for a long time, but it wasn’t possible. With this discovery, I think it’s possible.” (more…)

Read More