Tag Archives: component

Chemists turn key to new energy future

U chemists explain new reaction, demonstrating how quantum mechanics can help design more energy-efficient catalysts.

You’ve probably worn polyester clothes, and you’ve certainly used plenty of plastic objects and paint. But did you know that they come from natural gas?

The main component of natural gas, methane, has just one carbon atom and is the smallest fossil fuel. But as the ultimate source material for the above products and many others it packs an enormous punch. First, however, it must be converted to methanol, an alcohol—and there lies the challenge. (more…)

Read More

Researchers Build 3-D Structures Out of Liquid Metal

Researchers from North Carolina State University have developed three-dimensional (3-D) printing technology and techniques to create free-standing structures made of liquid metal at room temperature.

“It’s difficult to create structures out of liquids, because liquids want to bead up. But we’ve found that a liquid metal alloy of gallium and indium reacts to the oxygen in the air at room temperature to form a ‘skin’ that allows the liquid metal structures to retain their shapes,” says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work. (more…)

Read More

A Better Route to Xylan

Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels

After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels. A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.

The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels. (more…)

Read More

Scientists Pinpoint How Vitamin D May Help Clear Amyloid Plaques Found in Alzheimer’s

A team of academic researchers has identified the intracellular mechanisms regulated by vitamin D3 that may help the body clear the brain of amyloid beta, the main component of plaques associated with Alzheimer’s disease.

Published in the March 6 issue of the Journal of Alzheimer’s Disease, the early findings show that vitamin D3 may activate key genes and cellular signaling networks to help stimulate the immune system to clear the amyloid-beta protein. (more…)

Read More

Berkeley Lab Researchers Discover a Rotational Motion of Cells that Plays a Critical Role in Their Normal Development

In a study that holds major implications for breast cancer research as well as basic cell biology, scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a rotational motion that plays a critical role in the ability of breast cells to form the spherical structures in the mammary gland known as acini. This rotation, which the researchers call “CAMo,” for coherent angular motion, is necessary for the cells to form spheres. Without CAMo, the cells do not form spheres, which can lead to random motion, loss of structure and malignancy.

”What is most exciting to me about this stunning discovery is that it may finally give us a handle by which to discover the physical laws of cellular motion as they apply to biology,” says Mina Bissell, a leading authority on breast cancer and Distinguished Scientist with Berkeley Lab’s Life Sciences Division. (more…)

Read More