Tag Archives: cell membrane

Watching HIV Bud from Cells

Study Shows Last-Minute Role of Protein Named ALIX

University of Utah researchers devised a way to watch newly forming AIDS virus particles emerging or “budding” from infected human cells without interfering with the process. The method shows a protein named ALIX gets involved during the final stages of virus replication, not earlier, as was believed previously. (more…)

Read More

Clever chemistry and a new class of antibiotics

A new class of molecules called acyldepsipeptides — ADEPs — may provide a new way to attack bacteria that have developed resistance to antibiotics. Researchers at Brown and MIT have discovered a way to increase the potency of ADEPs by up to 1,200 times. Their findings appear in the Journal of the American Chemical Society.

PROVIDENCE, R.I. [Brown University] — As concerns about bacterial resistance to antibiotics grow, researchers are racing to find new kinds of drugs to replace ones that are no longer effective. One promising new class of molecules called acyldepsipeptides — ADEPs — kills bacteria in a way that no marketed antibacterial drug does — by altering the pathway through which cells rid themselves of harmful proteins. (more…)

Read More

How living cells solved a needle in a haystack problem to generate electrical signals

Scientists have figured out how calcium channels – the infinitesimal cell membrane pores that generate electrical signals by gating a charged-particle influx – have solved a “needle in a haystack” problem.

The solution to the longstanding riddle is reported in the Nov. 24 advanced online edition of Nature by UW and Howard Hughes Medical Institute investigators. Dr. Ning Zheng, a noted X-ray crystallographer, and Dr. William Catterall, a pioneer in ion channel research, were the senior researchers, and Dr. Lin Tang and Dr. Tamer Gamal El-Din headed the project. (more…)

Read More

Computer modeling shows crucial function of water molecules in proteins

Using molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom, UChicago scientists have discovered that just 12 molecules of water cause the long post-activation recovery period required by such ion channels before they can function again. The research has revealed a new mechanism in the function of a nearly universal biological structure that will have broad implications, ranging from fundamental biology to the design of pharmaceuticals.

“Our research clarifies the nature of this previously mysterious inactivation state. This gives us better understanding of fundamental biology and should improve the rational design of drugs, which often target the inactivated state of channels,” said Benoît Roux, professor of biochemistry and molecular biology, whose team’s findings were published online July 28 in Nature. (more…)

Read More

Common Food Preservative May Slow, Even Stop Tumor Growth

ANN ARBOR — Nisin, a common food preservative, may slow or stop squamous cell head and neck cancers, a University of Michigan study found.

What makes this particularly good news is that the Food and Drug Administration and the World Health Organization approved nisin as safe for human consumption decades ago, says Yvonne Kapila, the study’s principal investigator and professor at the University of Michigan School of Dentistry. (more…)

Read More

Diagnostic Technique Uses Immune Cell DNA

By looking at signature chemical differences in the DNA of various immune cells called leukocytes, scientists have developed a way to determine their relative abundance in blood samples. The relative abundance turns out to correlate with specific cancers and other diseases, making the technique, described in two recent papers, potentially valuable not only for research but also for diagnostics and treatment monitoring.

PROVIDENCE, R.I. [Brown University] — When a person is sick, there is a tell-tale sign in their blood: a different mix of the various types of immune cells called leukocytes. A group of scientists at several institutions including Brown University has discovered a way to determine that mix from the DNA in archival or fresh blood samples, potentially providing a practical new technology not only for medical research but also for clinical diagnosis and treatment monitoring of ailments including some cancers. (more…)

Read More

A Shiny New Tool for Imaging Biomolecules

*Berkeley Lab Researchers Embed Artificial Membranes with Billions of Nanoantennas for Enhanced Optical Studies*

At the heart of the immune system that protects our bodies from disease and foreign invaders is a vast and complex communications network involving millions of cells, sending and receiving chemical signals that can mean life or death. At the heart of this vast cellular signaling network are interactions between billions of proteins and other biomolecules. These interactions, in turn, are greatly influenced by the spatial patterning of signaling and receptor molecules. The ability to observe signaling spatial patterns in the immune and other cellular systems as they evolve, and to study the impact on molecular interactions and, ultimately, cellular communication, would be a critical tool in the fight against immunological and other disorders that lead to a broad range of health problems including cancer. Such a tool is now at hand. (more…)

Read More

How Pathogens Hijack Host Plants

Palo Alto, CA — Infestation by bacteria and other pathogens result in global crop losses of over $500 billion annually. A research team led by the Carnegie Institution’s Department of Plant Biology developed a novel trick for identifying how pathogens hijack plant nutrients to take over the organism. They discovered a novel family of pores that transport sugar out of the plant. Bacteria and fungi hijack the pores to access the plant sugar for food. The first goal of any pathogen is to access the host’s food supply to allow them to reproduce in large numbers. This is the first time scientists have a direct handle on controlling the food supply to pathogens and thus a new means to prevent a wide range of crop diseases and losses.  (more…)

Read More