Study Shows Last-Minute Role of Protein Named ALIX
University of Utah researchers devised a way to watch newly forming AIDS virus particles emerging or “budding” from infected human cells without interfering with the process. The method shows a protein named ALIX gets involved during the final stages of virus replication, not earlier, as was believed previously. (more…)
The third floor of the CMHC houses the Clinical Neuroscience Research Unit (CNRU), an inpatient and outpatient research facility. It’s an honor to be asked to start a dialogue with you about what we do on the CNRU. Over the next few months, I’d like to introduce you to the scientists and clinicians and their teams that work on the CNRU. Today I’d like to introduce you to some of the things we do on the 3rd floor.
Just as others in the building, my CNRU colleagues and I come to work to tackle the problems addressed on the other floors of the CMHC: the debilitating symptoms of mental illness including depression, hallucinations, delusions, drug addiction and anxiety to name a few. (more…)
Researchers had known for several decades that a certain chemical modification exists on messenger ribonucleic acid (mRNA), which is essential to the flow of genetic information. But only recently did experiments at the University of Chicago show that one major function of this modification governs the longevity and decay of RNA, a process critical to the development of healthy cells.
The chemical modification on mRNA in question is called N6-methyladenosine (m6A). A recent study by UChicago scientists reveals how the m6A modification on mRNA could affect the half-life of mRNA that in turn regulates cellular protein quantities. That discovery could provide fundamental insights into healthy functioning and disorders such as obesity, diabetes and infertility. (more…)
A new study reports that the small intestine uses more cells than scientists had realized to absorb microspheres large enough to contain therapeutic protein drugs, such as insulin. The finding in rats, published in the Proceedings of the National Academy of Sciences, is potentially good news for developing a means for oral delivery of such drugs.
PROVIDENCE, R.I. [Brown University] — The small intestine employs more cells and mechanisms than scientists previously thought to absorb relatively large particles, such as those that could encapsulate protein-based therapeutics like insulin, according to a new study. The findings, published the week of Aug. 5, 2013, in the Proceedings of the National Academy of Sciences, open another window for drug makers to increase absorption of medicines taken by mouth. (more…)
UCLA life scientists have identified a gene previously implicated in Parkinson’s disease that can delay the onset of aging and extend the healthy life span of fruit flies. The research, they say, could have important implications for aging and disease in humans.
The gene, called parkin, serves at least two vital functions: It marks damaged proteins so that cells can discard them before they become toxic, and it is believed to play a key role in the removal of damaged mitochondria from cells. (more…)
New findings overturn understanding of light-dependent environmental oxidants
Breathing oxygen… can be hazardous to your health?
Indeed, our bodies aren’t perfect. They make mistakes, among them producing toxic chemicals, called oxidants, in cells. We fight these oxidants naturally, and by eating foods rich in antioxidants such as blueberries and dark chocolate.
All forms of life that breathe oxygen—even ones that can’t be seen with the naked eye, such as bacteria—must fight oxidants to live. (more…)
ANN ARBOR — Scientists have known for nearly a century that cold-blooded animals, such as worms, flies and fish all live longer in cold environments, but have not known exactly why.
Researchers at the University of Michigan Life Sciences Institute have identified a genetic program that promotes longevity of roundworms in cold environments—and this genetic program also exists in warm-blooded animals, including humans. (more…)
A team of materials scientists at Harvard University and the University of Exeter has invented a new fibre which changes colour when stretched. Inspired by nature, the researchers identified and replicated the unique structural elements, which create the bright iridescent blue colour of a tropical plant’s fruit.
The multilayered fibre, described in the journal Advanced Materials, could lend itself to the creation of smart fabrics that visibly react to heat or pressure.
“Our new fibre is based on a structure we found in nature, and through clever engineering we’ve taken its capabilities a step further,” says lead author Dr Mathias Kolle, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS). “The plant, of course, cannot change colour. By combining its structure with an elastic material, however, we’ve created an artificial version that passes through a full rainbow of colours as it’s stretched.” (more…)