Tag Archives: neurodegenerative diseases

How Neurons Get Wired

Two different versions of the same signaling protein tell a nerve cell which end is which, UA researchers have discovered. The findings could help improve therapies for spinal injuries and neurodegenerative diseases.

University of Arizona scientists have discovered an unknown mechanism that establishes polarity in developing nerve cells. Understanding how nerve cells make connections is an important step in developing cures for nerve damage resulting from spinal cord injuries or neurodegenerative diseases such as Alzheimer’s.

In a study published on Aug. 12 in the journal Proceedings of the National Academy of Sciences, UA doctoral studentSara Parker and her adviser, assistant professor of cellular and molecular medicine Sourav Ghosh, report that the decision which will be the “plus” and the “minus” end in a newborn nerve cell is made by a long and a short version of the same signaling molecule. (more…)

Read More

Mind over mechanics

How thoughts can control a flying robot

It’s a staple of science fiction: people who can control objects with their minds.

At the University of Minnesota, a new technology is turning that fiction into reality.

In the lab of biomedical engineering professor Bin He, several young people have learned to use their thoughts to steer a flying robot around a gym, making it turn, rise, dip, and even sail through a ring. (more…)

Read More

Boosting ‘cellular garbage disposal’ can delay the aging process, UCLA biologists report

UCLA life scientists have identified a gene previously implicated in Parkinson’s disease that can delay the onset of aging and extend the healthy life span of fruit flies. The research, they say, could have important implications for aging and disease in humans.

The gene, called parkin, serves at least two vital functions: It marks damaged proteins so that cells can discard them before they become toxic, and it is believed to play a key role in the removal of damaged mitochondria from cells. (more…)

Read More

A Better Way to Culture Central Nervous Cells

A protein associated with neuron damage in Alzheimer’s patients provides a superior scaffold for growing central nervous system cells in the lab. The findings could have clinical implications for producing neural implants and offers new insights on the complex link between the apoE4 apolipoprotein and Alzheimer’s disease. Results appear in the journal Biomaterials.

PROVIDENCE, R.I. [Brown University] — A protein associated with neuron damage in people with Alzheimer’s disease is surprisingly useful in promoting neuron growth in the lab, according to a new study by engineering researchers at Brown University. The findings, in press at the journal Biomaterials, suggest a better method of growing neurons outside the body that might then be implanted to treat people with neurodegenerative diseases. (more…)

Read More

UMass Amherst Biochemists Trap a Chaperone Machine in Action, Opening Pathway to Possible New Cancer Treatment

AMHERST, Mass. – Molecular chaperones have emerged as exciting new potential drug targets, because scientists want to learn how to stop cancer cells, for example, from using chaperones to enable their uncontrolled growth. Now a team of biochemists at the University of Massachusetts Amherst led by Lila Gierasch have deciphered key steps in the mechanism of the Hsp70 molecular machine by “trapping” this chaperone in action, providing a dynamic snapshot of its mechanism.

She and colleagues describe this work in the current issue of Cell. Gierasch’s research on Hsp70 chaperones is supported by a long-running grant to her lab from NIH’s National Institute for General Medical Sciences. (more…)

Read More

Berkeley Lab Scientists Help Develop Promising Therapy for Huntington’s Disease

Initial results in mice could lead to new way to fight neurodegenerative diseases

There’s new hope in the fight against Huntington’s disease. A group of researchers that includes scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a compound that suppresses symptoms of the devastating disease in mice.

The compound is a synthetic antioxidant that targets mitochondria, an organelle within cells that serves as a cell’s power plant. Oxidative damage to mitochondria is implicated in many neurodegenerative diseases including Alzheimer’s, Parkinson’s, and Huntington’s. (more…)

Read More

Scientists Measure Communication between Stem Cell-Derived Motor Neurons, Muscle Cells

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure communication between stem cell–derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside the body using these neurons and cells and that the level of communication, or synaptic activity, between them can be accurately measured by stimulating the motor neurons with an electrode and then tracking the transfer of electrical activity into the muscle cells to which the neurons are connected. (more…)

Read More

How the Brain Strings Words Into Sentences

Distinct neural pathways are important for different aspects of language processing, researchers have discovered, studying patients with language impairments caused by neurodegenerative diseases.

While it has long been recognized that certain areas in the brain’s left hemisphere enable us to understand and produce language, scientists are still figuring out exactly how those areas divvy up the highly complex processes necessary to comprehend and produce language. (more…)

Read More