Tag Archives: cancer cell

Diabolical duo: Known breast cancer gene needs a partner to initiate and spread tumors

A study led by Princeton University researchers has revealed that the gene Metadherin — which is implicated in promoting the spread of breast cancer tumors — only stimulates tumor growth when the protein made by the gene interacts with a second protein known as SND1. (more…)

Read More

New Technique Targets Specific Areas of Cancer Cells with Different Drugs

Researchers have developed a technique for creating nanoparticles that carry two different cancer-killing drugs into the body and deliver those drugs to separate parts of the cancer cell where they will be most effective. The technique was developed by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.

“In testing on laboratory mice, our technique resulted in significant improvement in breast cancer tumor reduction as compared to conventional treatment techniques,” says Dr. Zhen Gu, senior author of a paper on the research and an assistant professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill. (more…)

Read More

UMass Amherst Biochemists Trap a Chaperone Machine in Action, Opening Pathway to Possible New Cancer Treatment

AMHERST, Mass. – Molecular chaperones have emerged as exciting new potential drug targets, because scientists want to learn how to stop cancer cells, for example, from using chaperones to enable their uncontrolled growth. Now a team of biochemists at the University of Massachusetts Amherst led by Lila Gierasch have deciphered key steps in the mechanism of the Hsp70 molecular machine by “trapping” this chaperone in action, providing a dynamic snapshot of its mechanism.

She and colleagues describe this work in the current issue of Cell. Gierasch’s research on Hsp70 chaperones is supported by a long-running grant to her lab from NIH’s National Institute for General Medical Sciences. (more…)

Read More

Promising Nanotechnology

Nanotechnology for drug delivery shows promise in treatment of pediatric leukemia

Nanotechnology developed by Delaware scientists could potentially deliver chemotherapy to children in a way that attacks cancer cells without harming healthy cells, greatly reducing side effects.

The work, conducted by researchers in the University of Delaware’s Department of Materials Science and Engineering and Nemours Center for Childhood Cancer Research, was published this month in the journal Molecular Pharmaceutics. (more…)

Read More

Duplex-sequencing Method Could Lead to Better Cancer Detection and Treatment

During an ice climbing trip to the Canadian Rockies last Christmas, two young researchers from the University of Washington, Drs. Michael Schmitt and Jesse Salk, talked about a simple but powerful idea to get better results when looking at cancer cells. If they could reduce the error rate in DNA sequencing, then researchers could better pinpoint which cells are mutating.

This improvement could lead to early diagnosis of cancer and a better treatment plan once researchers knew which cells were resistant to chemotherapy. (more…)

Read More

MU Research Team Creates New Cancer Drug that is 10 Times More Potent

Drug efficiently targets breast, lung and colon cancer; clinical trials could start within two years.

COLUMBIA, Mo. ­—  Legend has it that Ralph Waldo Emerson once said, “Build a better mousetrap, and the world will beat a path to your door.” University of Missouri researchers are doing just that, but instead of building mousetraps, the scientists are targeting cancer drugs. In a new study, MU medicinal chemists have taken an existing drug that is being developed for use in fighting certain types of cancer, added a special structure to it, and created a more potent, efficient weapon against cancer.

“Over the past decade, we have seen an increasing interest in using carboranes in drug design,” said Mark W. Lee Jr., assistant professor of chemistry in College of Arts and Science. “Carboranes are clusters of three elements — boron, carbon and hydrogen. Carboranes don’t fight cancer directly, but they aid in the ability of a drug to bind more tightly to its target, creating a more potent mechanism for destroying the cancer cells.” (more…)

Read More

UCLA Bioengineers Discover Single Cancer Cell Can Produce Up To Five Daughter Cells

Findings could aid researchers in understanding progression of disease

It’s well known in conventional biology that during the process of mammalian cell division, or mitosis, a mother cell divides equally into two daughter cells. But when it comes to cancer, say UCLA researchers, mother cells may be far more prolific.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science developed a platform to mechanically confine cells, simulating the in vivo three-dimensional environments in which they divide, and found that, upon confinement, cancer cells often split into three or more daughter cells.

“We hope that this platform will allow us to better understand how the 3-D mechanical environment may play a role in the progression of a benign tumor into a malignant tumor that kills,” said Dino Di Carlo, an associate professor of bioengineering at UCLA and principal investigator on the research. (more…)

Read More

Study: Heart Damage after Chemo Linked to Stress in Cardiac Cells

COLUMBUS, Ohio – Blocking a protein in the heart that is produced under stressful conditions could be a strategy to prevent cardiac damage that results from chemotherapy, a new study suggests.

Previous research has suggested that up to a quarter of patients who receive the common chemotherapy drug doxorubicin are at risk of developing heart failure later in life. Exactly how that heart damage is done remains unclear.

In this study, scientists identified a protein called heat shock factor-1 (HSF-1) as a likely source of chemotherapy-related heart damage in mice and cell cultures. Heat shock factor-1 is known to be induced by stress – in this case, the chemotherapy treatment itself. (more…)

Read More