Tag Archives: nanoparticle

Nanoparticle Breakthrough Could Capture Unseen Light for Solar Energy Conversion

Scientists demonstrate how organic dyes work as antennas to help harness, convert light

An international team of scientists has demonstrated a breakthrough in the design and function of nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into usable energy. (more…)

Read More

New Technique Targets Specific Areas of Cancer Cells with Different Drugs

Researchers have developed a technique for creating nanoparticles that carry two different cancer-killing drugs into the body and deliver those drugs to separate parts of the cancer cell where they will be most effective. The technique was developed by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.

“In testing on laboratory mice, our technique resulted in significant improvement in breast cancer tumor reduction as compared to conventional treatment techniques,” says Dr. Zhen Gu, senior author of a paper on the research and an assistant professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill. (more…)

Read More

Bold Move Forward in Molecular Analyses

Berkeley Lab Researchers Develop New Metrics for X-ray and Neutron Analysis of Flexible Macromolecules

A dramatic leap forward in the ability of scientists to study the structural states of macromolecules such as proteins and nanoparticles in solution has been achieved by a pair of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have developed a new set of metrics for analyzing data acquired via small angle scattering (SAS) experiments with X-rays (SAXS) or neutrons (SANS). Among other advantages, this will reduce the time required to collect data by up to 20 times.

“SAS is the only technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image,” says Robert Rambo, a scientist with Berkeley Lab’s Physical Biosciences Division, who developed the new SAS metrics along with John Tainer of Berkeley Lab’s Life Sciences Division and the Scripps Research Institute. (more…)

Read More

How Silver Turns People Blue

Ingesting silver — in antimicrobial health tonics or for extensive medical treatments involving silver — can cause argyria, condition in which the skin turns grayish-blue. Brown researchers have discovered how that happens. The process is similar to developing black-and-white photographs, and it’s not just the silver.

PROVIDENCE, R.I. [Brown University] — Researchers from Brown University have shown for the first time how ingesting too much silver can cause argyria, a rare condition in which patients’ skin turns a striking shade of grayish blue.

“It’s the first conceptual model giving the whole picture of how one develops this condition,” said Robert Hurt, professor of engineering at Brown and part of the research team. “What’s interesting here is that the particles someone ingests aren’t the particles that ultimately cause the disorder.” (more…)

Read More

Detecting Cancer with Lasers Has Limited Use, Say Mu Researchers

COLUMBIA, Mo. — One person dies every hour from melanoma skin cancer in the United States, according to the American Cancer Society. A technique known as photoacoustics can find some forms of melanoma even if only a few cancerous cells exist, but a recent study by University of Missouri researchers found that the technique was limited in its ability to identify other types of cancer. Attaching markers, called enhancers, to cancer cells could improve the ability of photoacoustics to find other types of cancer and could save lives thanks to faster diagnoses, but the technique is in its early stages.

“Eventually, a photoacoustic scan could become a routine part of a medical exam,” said Luis Polo-Parada, assistant professor of pharmacology and physiology and resident investigator at the MU Dalton Cardiovascular Research Center. “The technique doesn’t use X-rays like current methods of looking for cancer. It could also allow for much earlier detection of cancer. Now, a cancerous growth is undetectable until it reaches approximately one cubic centimeter in size. Photoacoustics could potentially find cancerous growths of only a few cells. Unfortunately, our research shows that, besides some cases of melanoma, the diagnostic use of photoacoustics still has major limitations. To overcome this problem, the use of photoacoustic enhancers like gold, carbon nanotubes or dyed nanoparticles is needed.” (more…)

Read More

Entropy Can Lead to Order, Paving The Route to Nanostructures

ANN ARBOR, Mich.— Researchers trying to herd tiny particles into useful ordered formations have found an unlikely ally: entropy, a tendency generally described as “disorder.”

Computer simulations by University of Michigan scientists and engineers show that the property can nudge particles to form organized structures. By analyzing the shapes of the particles beforehand, they can even predict what kinds of structures will form.

The findings, published in this week’s edition of Science, help lay the ground rules for making designer materials with wild capabilities such as shape-shifting skins to camouflage a vehicle or optimize its aerodynamics. (more…)

Read More

Gold Nanoparticles Could Treat Prostate Cancer With Fewer Side Effects than Chemotherapy, MU Researchers Find

In new study published in PNAS, scientists found that nanoparticles, produced from chemicals in tea, reduced tumors by 80 percent.

COLUMBIA, Mo. – Currently, large doses of chemotherapy are required when treating certain forms of cancer, resulting in toxic side effects. The chemicals enter the body and work to destroy or shrink the tumor, but also harm vital organs and drastically affect bodily functions. Now, University of Missouri scientists have found a more efficient way of targeting prostate tumors by using gold nanoparticles and a compound found in tea leaves. This new treatment would require doses that are thousands of times smaller than chemotherapy and do not travel through the body inflicting damage to healthy areas. The study is being published in the Proceedings of the National Academy of Science. (more…)

Read More

Nanoparticles Seen as Artificial Atoms

Berkeley Lab Researchers Observations of Nanorod Crystal Growth Points Way to Next Generation Energy Devices

In the growth of crystals, do nanoparticles act as “artificial atoms” forming molecular-type building blocks that can assemble into complex structures? This is the contention of a major but controversial theory to explain nanocrystal growth. A study by researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) may resolve the controversy and point the way to energy devices of the future.

Led by Haimei Zheng, a staff scientist in Berkeley Lab’s Materials Sciences Division, the researchers used a combination of transmission electron microscopy and advanced liquid cell handling techniques to carry out real-time observations of the growth of nanorods from nanoparticles of platinum and iron. Their observations support the theory of nanoparticles acting like artificial atoms during crystal growth. (more…)

Read More