Washington, DC— The paradox of the missing xenon might sound like the title of the latest airport thriller, but it’s actually a problem that’s stumped geophysicists for decades. New work from an international team including Carnegie’s Alexander Goncharov and Hanyu Liu, and Carnegie alumni Elissaios Stavrou and Sergey Lobanov, is chasing down the solution to this longstanding puzzle.(more…)
THE WOODLANDS, Texas – NASA’s Mars rover Curiosity has seen evidence of water-bearing minerals in rocks near where it had already found clay minerals inside a drilled rock.
Last week, the rover’s science team announced that analysis of powder from a drilled mudstone rock on Mars indicates past environmental conditions that were favorable for microbial life. Additional findings presented on March 18 at a news briefing at the Lunar and Planetary Science Conference in The Woodlands, Texas, suggest those conditions extended beyond the site of the drilling. (more…)
ANN ARBOR — Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.
The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions. (more…)
Berkeley Lab Researchers Observations of Nanorod Crystal Growth Points Way to Next Generation Energy Devices
In the growth of crystals, do nanoparticles act as “artificial atoms” forming molecular-type building blocks that can assemble into complex structures? This is the contention of a major but controversial theory to explain nanocrystal growth. A study by researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) may resolve the controversy and point the way to energy devices of the future.
Led by Haimei Zheng, a staff scientist in Berkeley Lab’s Materials Sciences Division, the researchers used a combination of transmission electron microscopy and advanced liquid cell handling techniques to carry out real-time observations of the growth of nanorods from nanoparticles of platinum and iron. Their observations support the theory of nanoparticles acting like artificial atoms during crystal growth. (more…)
The theory that pigeons’ famous skill at navigation is down to iron-rich nerve cells in their beaks has been disproved by a new study published in Nature.
The study shows that iron-rich cells in the pigeon beak are in fact specialised white blood cells, called macrophages. This finding, which shatters the established dogma, puts the field back on course as the search for magnetic cells continues.(more…)
*Berkeley Lab Researchers Developing Promising Treatment for Safely Decontaminating Humans Exposed to Radioactive Actinides*
The New York Times recently reported that in the darkest moments of the triple meltdown last year of the Fukushima Daiichi nuclear power plant, Japanese officials considered the evacuation of the nearly 36 million residents of the Tokyo metropolitan area. The consideration of so drastic an action reflects the harsh fact that in the aftermath of a major radiation exposure event, such as a nuclear reactor accident or a “dirty bomb” terrorist attack, treatments for mass contamination are antiquated and very limited. The only chemical agent now available for decontamination – a compound known as DTPA – is a Cold War relic that must be administered intravenously and only partially removes some of the deadly actinides – the radioactive chemical elements spanning from actinium to lawrencium on the periodic table – that pose the greatest health threats. (more…)
*New research reveals how the arrival of the first plants 470 million years ago triggered a series of ice ages. Led by the Universities of Exeter and Oxford, the study is published in Nature Geoscience.*
The team set out to identify the effects that the first land plants had on the climate during the Ordovician Period, which ended 444 million years ago. During this period the climate gradually cooled, leading to a series of ‘ice ages’. This global cooling was caused by a dramatic reduction in atmospheric carbon, which this research now suggests was triggered by the arrival of plants.
Among the first plants to grow on land were the ancestors of mosses that grow today. This study shows that they extracted minerals such as calcium, magnesium, phosphorus and iron from rocks in order to grow. In so doing, they caused chemical weathering of the Earth’s surface. This had a dramatic impact on the global carbon cycle and subsequently on the climate. It could also have led to a mass extinction of marine life. (more…)
Washington, D.C. — The composition of the Earth’s core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen is the most abundant element in the planet, so it is not unreasonable to expect oxygen might be one of the dominant “light elements” in the core. However, new research from a team including Carnegie’s Yingwei Fei shows that oxygen does not have a major presence in the outer core. This has major implications for our understanding of the period when the Earth formed through the accretion of dust and clumps of matter. Their work is published Nov. 24 in Nature. (more…)