Tag Archives: copper

Copper is Key in Burning Fat

Berkeley Lab scientist says results could provide new target for obesity research

A new study is further burnishing copper’s reputation as an essential nutrient for human physiology. A research team led by a scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and at UC Berkeley has found that copper plays a key role in metabolizing fat. (more…)

Read More

A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures

Researchers at Berkeley and Oak Ridge Labs Test a Multi-element High-Entropy Alloy with

A new concept in metallic alloy design – called “high‐entropy alloys” – has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley and Oak Ridge National Laboratories (Berkeley Lab and ORNL). (more…)

Read More

For metals of the smartphone age, no Plan B

Many of the metals needed to feed the surging global demand for high-tech products, from smart phones to solar panels, cannot be replaced, leaving some markets vulnerable if resources become scarce, according to a new Yale study.

In a comprehensive analysis, a team of researchers from the Yale School of Forestry & Environmental Studies (F&ES) evaluated how all 62 metals or metalloids on the periodic table of elements are used in consumer products, and the extent to which each of those metals could be replaced if reserves dwindle or supplies become unreliable. (more…)

Read More

Green Tea Extract Interferes with the Formation of Amyloid Plaques in Alzheimer’s Disease

ANN ARBOR — Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.

The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions. (more…)

Read More

Copper Kills Harmful Bacteria, UA Researchers Find

Copper alloys may make more hygienic cooking surfaces than stainless steel, according to a recent study by Sadhana Ravishankar of the UA department of veterinary science and microbiology. Her lab group discovered that copper alloys have antimicrobial effects against the foodborne pathogen Salmonella enterica.

Each year a tiny, rod-shaped species of bacteria with a fondness for proliferating on human food causes numerous cases of food poisoning around the world, sometimes leading to severe illness and even death.

The culprit, Salmonella enterica, is a leading cause of diarrheal illness worldwide, said Sadhana Ravishankar, an assistant professor in the University of Arizona department of veterinary science and microbiology.

But Ravishankar’s lab may have discovered a way to reduce the number of food poisoning cases due to Salmonella and possibly other bacteria: prepare food on surfaces made with materials that contain some amount of the element copper, known as copper alloys. (more…)

Read More

How Ion Bombardment Reshapes Metal Surfaces

Ion bombardment of metal surfaces is an important, but poorly understood, nanomanufacturing technique. New research using sophisticated supercomputer simulations has shown what goes on in trillionths of a second. The advance could lead to better ways to predict the phenomenon and more uses of the technique to make new nanoscale products.

PROVIDENCE, R.I. [Brown University] — To modify a metal surface at the scale of atoms and molecules — for instance to refine the wiring in computer chips or the reflective silver in optical components — manufacturers shower it with ions. While the process may seem high-tech and precise, the technique has been limited by the lack of understanding of the underlying physics. In a new study, Brown University engineers modeled noble gas ion bombardments with unprecedented richness, providing long-sought insights into how it works.

“Surface patterns and stresses caused by ion beam bombardments have been extensively studied experimentally but could not be predicted accurately so far,” said Kyung-Suk Kim, professor of engineering at Brown and co-author of the study published May 23 in the Proceedings of the Royal Society A. “The new discovery is expected to provide predictive design capability for controlling the surface patterns and stresses in nanotechnology products.” (more…)

Read More

Acid Rain

UD’s long-term monitoring shows 60 percent reduction in acidity of Delaware rain

Several decades ago, precipitation in Delaware was among the most acidic in the country. Pollutants in the air reacted with rainwater to sprinkle sulfuric, nitric and carbonic acids onto the ground below, affecting crops and ecosystems statewide.

The scientific consensus is that pollution controls enacted through the Clean Air Act Amendments in the 1990s and other measures have helped decrease the acidity of rain by approximately 60 percent to less harmful levels, as reflected in data gathered nationwide and by UD researchers in Lewes, Del., as part of a longstanding study. (more…)

Read More

Novel Device Removes Heavy Metals From Water

*Engineers at Brown University have developed a system that cleanly and efficiently removes trace heavy metals from water. In experiments, the researchers showed the system reduced cadmium, copper, and nickel concentrations, returning contaminated water to near or below federally acceptable standards. The technique is scalable and has viable commercial applications, especially in the environmental remediation and metal recovery fields. Results appear in the Chemical Engineering Journal.*

PROVIDENCE, R.I. [Brown University] — An unfortunate consequence of many industrial and manufacturing practices, from textile factories to metalworking operations, is the release of heavy metals in waterways. Those metals can remain for decades, even centuries, in low but still dangerous concentrations.

Ridding water of trace metals “is really hard to do,” said Joseph Calo, professor emeritus of engineering who maintains an active laboratory at Brown. He noted the cost, inefficiency, and time needed for such efforts. “It’s like trying to put the genie back in the bottle.” (more…)

Read More