Tag Archives: copper

Copper is Key in Burning Fat

Berkeley Lab scientist says results could provide new target for obesity research

A new study is further burnishing copper’s reputation as an essential nutrient for human physiology. A research team led by a scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and at UC Berkeley has found that copper plays a key role in metabolizing fat. (more…)

Read More

A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures

Researchers at Berkeley and Oak Ridge Labs Test a Multi-element High-Entropy Alloy with

A new concept in metallic alloy design – called “high‐entropy alloys” – has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley and Oak Ridge National Laboratories (Berkeley Lab and ORNL). (more…)

Read More

For metals of the smartphone age, no Plan B

Many of the metals needed to feed the surging global demand for high-tech products, from smart phones to solar panels, cannot be replaced, leaving some markets vulnerable if resources become scarce, according to a new Yale study.

In a comprehensive analysis, a team of researchers from the Yale School of Forestry & Environmental Studies (F&ES) evaluated how all 62 metals or metalloids on the periodic table of elements are used in consumer products, and the extent to which each of those metals could be replaced if reserves dwindle or supplies become unreliable. (more…)

Read More

Green Tea Extract Interferes with the Formation of Amyloid Plaques in Alzheimer’s Disease

ANN ARBOR — Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.

The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions. (more…)

Read More

Acid Rain

UD’s long-term monitoring shows 60 percent reduction in acidity of Delaware rain

Several decades ago, precipitation in Delaware was among the most acidic in the country. Pollutants in the air reacted with rainwater to sprinkle sulfuric, nitric and carbonic acids onto the ground below, affecting crops and ecosystems statewide.

The scientific consensus is that pollution controls enacted through the Clean Air Act Amendments in the 1990s and other measures have helped decrease the acidity of rain by approximately 60 percent to less harmful levels, as reflected in data gathered nationwide and by UD researchers in Lewes, Del., as part of a longstanding study. (more…)

Read More

Novel Device Removes Heavy Metals From Water

*Engineers at Brown University have developed a system that cleanly and efficiently removes trace heavy metals from water. In experiments, the researchers showed the system reduced cadmium, copper, and nickel concentrations, returning contaminated water to near or below federally acceptable standards. The technique is scalable and has viable commercial applications, especially in the environmental remediation and metal recovery fields. Results appear in the Chemical Engineering Journal.*

PROVIDENCE, R.I. [Brown University] — An unfortunate consequence of many industrial and manufacturing practices, from textile factories to metalworking operations, is the release of heavy metals in waterways. Those metals can remain for decades, even centuries, in low but still dangerous concentrations.

Ridding water of trace metals “is really hard to do,” said Joseph Calo, professor emeritus of engineering who maintains an active laboratory at Brown. He noted the cost, inefficiency, and time needed for such efforts. “It’s like trying to put the genie back in the bottle.” (more…)

Read More

Stronger Than Steel, Novel Metals Are Moldable as Plastic

Imagine a material that’s stronger than steel, but just as versatile as plastic, able to take on a seemingly endless variety of forms. For decades, materials scientists have been trying to come up with just such an ideal substance, one that could be molded into complex shapes with the same ease and low expense as plastic but without sacrificing the strength and durability of metal. 

Now a team led by Jan Schroers, a materials scientist at Yale University, has shown that some recently developed bulk metallic glasses (BMGs)-metal alloys that have randomly arranged atoms as opposed to the orderly, crystalline structure found in ordinary metals-can be blow molded like plastics into complex shapes that can’t be achieved using regular metal, yet without sacrificing the strength or durability that metal affords. Their findings are described online in the current issue of the journal Materials Today.  (more…)

Read More