Tag Archives: amino acids

Deep Biosphere Harbors Active, Growing Communities of Microorganisms

The deep biosphere—the realm of sediments far below the seafloor—harbors a vast ecosystem of bacteria, archaea, and fungi that are actively metabolizing, proliferating, and moving, according a new study by scientists at Woods Hole Oceanographic Institution (WHOI) and the University of Delaware (UD).

“This is the first molecular evidence for active cell division in the deep biosphere,” says WHOI postdoctoral investigator Bill Orsi, who was the lead author on the study. Previous studies and models had suggested cells were alive, but whether the cells were actually dividing or not had remained elusive. (more…)

Read More

Jurassic Park molecules?

Enzymes evolved in the lab hold commercial and scientific promise

Whether big, small, slimy, or tall, most animal bodies are symmetric.

Except for sea anemones, starfish, sponges, and the like, animals have bilateral, or right-left, symmetry. Us included.

The bilateral body plan became the norm over eons of evolution. But what about molecules? Have any evolved common structures like a body plan? (more…)

Read More

Right Target, but Missing the Bulls-Eye for Alzheimer’s

UCLA researchers discover new point of attack for drug therapy

Alzheimer’s disease is the most common cause of late-life dementia. The disorder is thought to be caused by a protein known as amyloid-beta, or Abeta, which clumps together in the brain, forming plaques that are thought to destroy neurons. This destruction starts early, too, and can presage clinical signs of the disease by up to 20 years.

For decades now, researchers have been trying, with limited success, to develop drugs that prevent this clumping. Such drugs require a “target” — a structure they can bind to, thereby preventing the toxic actions of Abeta. (more…)

Read More

More Sophisticated Wiring, Not Just a Bigger Brain, Helped Humans Evolve Beyond Chimps

Human and chimp brains look anatomically similar because both evolved from the same ancestor millions of years ago. But where does the chimp brain end and the human brain begin?

A new UCLA study pinpoints uniquely human patterns of gene activity in the brain that could shed light on how we evolved differently than our closest relative. The identification of these genes could improve understanding of human brain diseases like autism and schizophrenia, as well as learning disorders and addictions.

The research appears Aug. 22 in the advance online edition of the journal Neuron. (more…)

Read More

Organics Probably Formed Easily in Early Solar System

Complex organic compounds, including many important to life on Earth, were readily produced under conditions that likely prevailed in the primordial solar system. Scientists at the University of Chicago and NASA Ames Research Center came to this conclusion after linking computer simulations to laboratory experiments.

Fred Ciesla, assistant professor in geophysical sciences at UChicago, simulated the dynamics of the solar nebula, the cloud of gas and dust from which the sun and the planets formed. Although every dust particle within the nebula behaved differently, they all experienced the conditions needed for organics to form over a simulated million-year period. (more…)

Read More

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in The Fruit Fly

UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly. (more…)

Read More

Correct Protein Folding:

*Berkeley Lab Researchers Identify Structure of Key Control Element Behind Protein Misfolding That Can Lead to Disease*

The gold standard for nanotechnology is nature’s own proteins. These biomolecular nanomachines – macromolecules forged from peptide chains of amino acids – are able to fold themselves into a dazzling multitude of shapes and forms that enable them to carry out an equally dazzling multitude of functions fundamental to life. As important as protein folding is to virtually all biological systems, the mechanisms behind this process have remained a mystery. The fog, however, is being lifted.

A team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), using the exceptionally bright and powerful x-ray beams of the Advanced Light Source, have determined the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins. The incorrect or “misfolding” of proteins has been linked to many diseases, including Alzheimer’s, Parkinson’s and some forms of cancer. (more…)

Read More

MSU Researchers Identify Path to Treat Parkinson’s Disease at Its Inception

EAST LANSING, Mich. — Imagine if doctors could spot Parkinson’s disease at its inception and treat the protein that triggers it before the disease can sicken the patient.

A team of researchers led by Basir Ahmad, a postdoctoral researcher at Michigan State University, has demonstrated that slow-wriggling alpha-synuclein proteins are the cause of aggregation, or clumping together, which is the first step of Parkinson’s. The results are published in the current issue of the Proceedings of the National Academy of Sciences. (more…)

Read More