Tag Archives: ultraviolet radiation

Startup Licenses Invention to Enhance Skin Cancer Prevention

UA research has resulted in a melanin-producing compound for a systemic approach to preventing skin damage.

The University of Arizona has licensed two inventions developed in the Department of Chemistry and Biochemistry to startup MCR Therapeutics. The inventors, Minying Cai and Victor J. Hruby, developed targeted peptides through their research into drug design and bioactivity expression relating to hormone activity in the brain and periphery. (more…)

Read More

Acid raid, ozone depletion contributed to ancient extinction

Washington, D.C.— Around 250 million years ago, at the end of the Permian period, there was a mass extinction so severe that it remains the most traumatic known species die-off in Earth’s history. Some researchers have suggested that this extinction was triggered by contemporaneous volcanic eruptions in Siberia. New results from a team including Director of Carnegie’s Department of Terrestrial Magnetism Linda Elkins-Tanton show that the atmospheric effects of these eruptions could have been devastating. Their work is published in Geology.

The mass extinction included the sudden loss of more than 90 percent of marine species and more than 70 percent of terrestrial species and set the stage for the rise of the dinosaurs. The fossil record suggests that ecological diversity did not fully recover until several million years after the main pulse of the extinction. (more…)

Read More

The Helix Nebula: Bigger in Death than Life

A dying star is refusing to go quietly into the night, as seen in this combined infrared and ultraviolet view from NASA’s Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX), which NASA has lent to the California Institute of Technology in Pasadena. In death, the star’s dusty outer layers are unraveling into space, glowing from the intense ultraviolet radiation being pumped out by the hot stellar core.

This object, called the Helix nebula, lies 650 light-years away in the constellation of Aquarius. Also known by the catalog number NGC 7293, it is a typical example of a class of objects called planetary nebulae. Discovered in the 18th century, these cosmic works of art were erroneously named for their resemblance to gas-giant planets. (more…)

Read More

Large Bacterial Population Colonized Land 2.75 Billion Years Ago

There is evidence that some microbial life had migrated from the Earth’s oceans to land by 2.75 billion years ago, though many scientists believe such land-based life was limited because the ozone layer that shields against ultraviolet radiation did not form until hundreds of millions years later.

But new research from the University of Washington suggests that early microbes might have been widespread on land, producing oxygen and weathering pyrite, an iron sulfide mineral, which released sulfur and molybdenum into the oceans. (more…)

Read More

CU-Boulder-led Team Finds Microbes in Extreme Environment on South American Volcanoes

A team led by the University of Colorado Boulder looking for organisms that eke out a living in some of the most inhospitable soils on Earth has found a hardy few.

A new DNA analysis of rocky soils in the Martian-like landscape on some volcanoes in South America has revealed a handful of bacteria, fungi and other rudimentary organisms called archaea, which seem to have a different way of converting energy than their cousins elsewhere in the world.

“We haven’t formally identified or characterized the species,” said Ryan Lynch, a CU-Boulder doctoral student involved in the study. “But these are very different than anything else that has been cultured. Genetically, they’re at least 5 percent different than anything else in the DNA database of 2.5 million sequences.” (more…)

Read More

Organics Probably Formed Easily in Early Solar System

Complex organic compounds, including many important to life on Earth, were readily produced under conditions that likely prevailed in the primordial solar system. Scientists at the University of Chicago and NASA Ames Research Center came to this conclusion after linking computer simulations to laboratory experiments.

Fred Ciesla, assistant professor in geophysical sciences at UChicago, simulated the dynamics of the solar nebula, the cloud of gas and dust from which the sun and the planets formed. Although every dust particle within the nebula behaved differently, they all experienced the conditions needed for organics to form over a simulated million-year period. (more…)

Read More