Tag Archives: spitzer

Mit FIFI-LS auf den Spuren der Sternengeburt im Orionnebel

Neues Infrarot-Spektrometer aus Deutschland auf fliegender Sternwarte SOFIA im Einsatz

Bei seinem ersten wissenschaftlichen Einsatz hat das neue Ferninfrarot-Spektrometer FIFI-LS (Field-Imaging Far-Infrared Line Spectrometer) die Geburt neuer Sterne im Orionnebel sowie in neun weiteren Himmelsregionen erforscht. Dabei hat das Instrument an Bord der fliegenden Sternwarte SOFIA (Stratosphären-Observatorium Für Infrarot-Astronomie) der amerikanischen Weltraumbehörde NASA und des Deutschen Zentrums für Luft- und Raumfahrt (DLR) wichtige Daten zur Sternentstehung gesammelt und gleichzeitig seine Einsatzfähigkeit unter Beweis gestellt. Damit ist neben dem Ferninfrarot-Spektrometer GREAT das zweite deutsche SOFIA-Instrument erfolgreich in die Betriebsphase gestartet. (more…)

Read More

Spitzer Stares into the Heart of New Supernova in M82

The closest supernova of its kind to be observed in the last few decades has sparked a global observing campaign involving legions of instruments on the ground and in space, including NASA’s Spitzer Space Telescope. With its dust-piercing infrared vision, Spitzer brings an important perspective to this effort by peering directly into the heart of the aftermath of the stellar explosion.

Dust in the supernova’s host galaxy M82, also called the “Cigar galaxy,” partially obscures observations in optical and high-energy forms of light. Spitzer can, therefore, complement all the other observatories taking part in painting a complete portrait of a once-in-a-generation supernova, which was first spotted in M82 on Jan. 21, 2014. A supernova is a tremendous explosion that marks the end of life for some stars. (more…)

Read More

Stormy Stars? NASA’s Spitzer Probes Weather on Brown Dwarfs

Swirling, stormy clouds may be ever-present on cool celestial orbs called brown dwarfs. New observations from NASA’s Spitzer Space Telescope suggest that most brown dwarfs are roiling with one or more planet-size storms akin to Jupiter’s “Great Red Spot.”

“As the brown dwarfs spin on their axis, the alternation of what we think are cloud-free and cloudy regions produces a periodic brightness variation that we can observe,” said Stanimir Metchev of the University of Western Ontario, Canada. “These are signs of patchiness in the cloud cover.” (more…)

Read More

Spitzer and ALMA Reveal a Star’s Bubbly Birth

It’s a bouncing baby . . . star! Combined observations from NASA’s Spitzer Space Telescope and the newly completed Atacama Large Millimeter/submillimeter Array (ALMA) in Chile have revealed the throes of stellar birth as never before in the well-studied object known as HH 46/47.

Herbig-Haro (HH) objects form when jets shot out by newborn stars collide with surrounding material, producing small, bright, nebulous regions. To our eyes, the dynamics within many HH objects are obscured by enveloping gas and dust. But the infrared and submillimeter wavelengths of light seen by Spitzer and ALMA, respectively, pierce the dark cosmic cloud around HH 46/47 to let us in on the action. (more…)

Read More

The Helix Nebula: Bigger in Death than Life

A dying star is refusing to go quietly into the night, as seen in this combined infrared and ultraviolet view from NASA’s Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX), which NASA has lent to the California Institute of Technology in Pasadena. In death, the star’s dusty outer layers are unraveling into space, glowing from the intense ultraviolet radiation being pumped out by the hot stellar core.

This object, called the Helix nebula, lies 650 light-years away in the constellation of Aquarius. Also known by the catalog number NGC 7293, it is a typical example of a class of objects called planetary nebulae. Discovered in the 18th century, these cosmic works of art were erroneously named for their resemblance to gas-giant planets. (more…)

Read More

Infant Galaxy Offers Peek at Early Universe

EAST LANSING, Mich. — A Michigan State University astronomer is part of an international team of scientists that has discovered a galaxy so far, far away that its light was emitted not all that long after the Big Bang occurred.

The research of MSU’s physics and astronomy professor Megan Donahue and colleagues is detailed in the recent issue of the journal Nature. They found that this galaxy began emitting light “just” 490 million years after the Big Bang, when the universe was only 3.6 percent of its present age. (more…)

Read More

Making a Spectacle of Star Formation in Orion

Looking like a pair of eyeglasses only a rock star would wear, this nebula brings into focus a murky region of star formation. NASA’s Spitzer Space Telescope exposes the depths of this dusty nebula with its infrared vision, showing stellar infants that are lost behind dark clouds when viewed in visible light.

Best known as Messier 78, the two round greenish nebulae are actually cavities carved out of the surrounding dark dust clouds. The extended dust is mostly dark, even to Spitzer’s view, but the edges show up in mid-wavelength infrared light as glowing, red frames surrounding the bright interiors. Messier 78 is easily seen in small telescopes in the constellation of Orion, just to the northeast of Orion’s belt, but looks strikingly different, with dominant, dark swaths of dust. Spitzer’s infrared eyes penetrate this dust, revealing the glowing interior of the nebulae. (more…)

Read More

A Green Ring Fit for a Superhero

This glowing emerald nebula seen by NASA’s Spitzer Space Telescope is reminiscent of the glowing ring wielded by the superhero Green Lantern. In the comic books, the diminutive Guardians of the Planet “Oa” forged his power ring, but astronomers believe rings like this are actually sculpted by the powerful light of giant “O” stars. O stars are the most massive type of star known to exist.

Named RCW 120 by astronomers, this region of hot gas and glowing dust can be found in the murky clouds encircled by the tail of the constellation Scorpius. The green ring of dust is actually glowing in infrared colors that our eyes cannot see, but show up brightly when viewed by Spitzer’s infrared detectors. At the center of this ring are a couple of giant stars whose intense ultraviolet light carved out the bubble, though they blend in with the other stars when viewed in infrared. (more…)

Read More