Tag Archives: sulfur

NASA Rover Finds Conditions Once Suited for Ancient Life on Mars

PASADENA, Calif. –– An analysis of a rock sample collected by NASA’s Curiosity rover shows ancient Mars could have supported living microbes.

Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon — some of the key chemical ingredients for life — in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater on the Red Planet last month.

“A fundamental question for this mission is whether Mars could have supported a habitable environment,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program at the agency’s headquarters in Washington. “From what we know now, the answer is yes.” (more…)

Read More

NASA Mars Rover Preparing to Drill into First Martian Rock

PASADENA, Calif. — NASA’s Mars rover Curiosity is driving toward a flat rock with pale veins that may hold clues to a wet history on the Red Planet. If the rock meets rover engineers’ approval when Curiosity rolls up to it in coming days, it will become the first to be drilled for a sample during the Mars Science Laboratory mission.

The size of a car, Curiosity is inside Mars’ Gale Crater investigating whether the planet ever offered an environment favorable for microbial life. Curiosity landed in the crater five months ago to begin its two-year prime mission. (more…)

Read More

NASA Mars Rover Fully Analyzes First Soil Samples

PASADENA, Calif. – NASA’s Mars Curiosity rover has used its full array of instruments to analyze Martian soil for the first time, and found a complex chemistry within the Martian soil. Water and sulfur and chlorine-containing substances, among other ingredients, showed up in samples Curiosity’s arm delivered to an analytical laboratory inside the rover.

Detection of the substances during this early phase of the mission demonstrates the laboratory’s capability to analyze diverse soil and rock samples over the next two years. Scientists also have been verifying the capabilities of the rover’s instruments. (more…)

Read More

Hearty Organisms Discovered in Bitter-Cold Antarctic Brine

EAST LANSING, Mich. — Where there’s water there’s life – even in brine beneath 60 feet of Antarctic ice, in permanent darkness and subzero temperatures.

While Lake Vida, located in the northernmost of the McMurdo Dry Valleys of East Antarctica, will never be a vacation destination, it is home to some newly discovered hearty microbes. In the current issue of the Proceedings of the National Academy of Science, Nathaniel Ostrom, Michigan State University zoologist, has co-authored “Microbial Life at -13ºC in the Brine of an Ice-Sealed Antarctic Lake.” (more…)

Read More

Large Bacterial Population Colonized Land 2.75 Billion Years Ago

There is evidence that some microbial life had migrated from the Earth’s oceans to land by 2.75 billion years ago, though many scientists believe such land-based life was limited because the ozone layer that shields against ultraviolet radiation did not form until hundreds of millions years later.

But new research from the University of Washington suggests that early microbes might have been widespread on land, producing oxygen and weathering pyrite, an iron sulfide mineral, which released sulfur and molybdenum into the oceans. (more…)

Read More

Sediment Chemicals in Coastal Rivers Overall Lower in U.S. than Worldwide Averages

Almost all the sediment-associated chemical concentrations found in 131 of the nation’s rivers that drain to the Atlantic, Pacific and Gulf Coasts are lower than worldwide averages, according to a new study by the USGS. These coastal rivers are a significant pathway for the delivery of sediment-associated chemicals to the world’s coastal zones and oceans.

“I hope that the results of this new study will remind everyone that it is not only river water that can transport chemicals and pollutants, but also the associated sediment load,” said USGS Director Marcia McNutt. “Our citizens expect high environmental quality as compared with worldwide averages, but clean water alone will not suffice if river sediments are host to toxic heavy metals and concentrated organics that can produce dead zones.” (more…)

Read More

Hydrogen from Acidic Water: Berkeley Lab Researchers Develop a Potential Low Cost Alternative to Platinum for Splitting Water

A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts. (more…)

Read More

Earth’s Core Deprived of Oxygen

Washington, D.C. — The composition of the Earth’s core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen is the most abundant element in the planet, so it is not unreasonable to expect oxygen might be one of the dominant “light elements” in the core. However, new research from a team including Carnegie’s Yingwei Fei shows that oxygen does not have a major presence in the outer core. This has major implications for our understanding of the period when the Earth formed through the accretion of dust and clumps of matter. Their work is published Nov. 24 in Nature. (more…)

Read More