Tag Archives: molecule

How to rejuvenate ageing immune cells

Researchers from UCL have demonstrated how an interplay between nutrition, metabolism and immunity is involved in the process of ageing.

The two new studies, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), could help to enhance our immunity to disease through dietary intervention and help make existing immune system therapies more effective. As we age our immune systems decline. Older people suffer from increased incidence and severity of both infections and cancer. In addition, vaccination becomes less efficient with age. (more…)

Read More

Blocking cells’ movement to stop the spread of cancer

Insights into how cells move through the body could lead to innovative techniques to stop cancer cells from spreading and causing secondary tumours, according to new UCL research.

Scientists discovered that cells can change into an invasive, liquid-like state to readily navigate the narrow channels in our body. This transformation is triggered by chemical signals, which could be blocked in order to stop cancer cells from spreading. (more…)

Read More

SOFS Take to Water

Researchers at Berkeley Lab’s Molecular Foundry Create First Soluble 2D Supramolecular Organic Frameworks

Supramolecular chemistry, aka chemistry beyond the molecule, in which molecules and molecular complexes are held together by non-covalent bonds, is just beginning to come into its own with the emergence of nanotechnology. Metal-organic frameworks (MOFs) are commanding much of the attention because of their appetite for greenhouse gases, but a new player has joined the field – supramolecular organic frameworks (SOFs). Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled the first two-dimensional SOFs that self-assemble in solution, an important breakthrough that holds implications for sensing and separation technologies, energy sciences, and, perhaps most importantly, biomimetics. (more…)

Read More

Taking a New Look at Carbon Nanotubes

Berkeley Researchers Develop Technique For Imaging Individual Carbon Nanotubes

Despite their almost incomprehensibly small size – a diameter about one ten-thousandth the thickness of a human hair – single-walled carbon nanotubes come in a plethora of different “species,” each with its own structure and unique combination of electronic and optical properties. Characterizing the structure and properties of an individual carbon nanotube has involved a lot of guesswork – until now.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have developed a technique that can be used to identify the structure of an individual carbon nanotube and characterize its electronic and optical properties in a functional device. (more…)

Read More

Flawed Diamonds: Gems for New Technology

Using ultra-fast laser pulses, a team of researchers led by UA assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds containing nitrogen-vacancy centers – promising candidates for a variety of technological advances such as quantum computing.

A team of researchers led by University of Arizona assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds that contain nitrogen-vacancy centers – defects in which two adjacent carbon atoms in the diamond’s crystal structure are replaced by a single nitrogen atom and an empty gap. (more…)

Read More

Green Tea Extract Interferes with the Formation of Amyloid Plaques in Alzheimer’s Disease

ANN ARBOR — Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.

The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions. (more…)

Read More

How Computers Push on the Molecules They Simulate

Berkeley Lab bioscientists and their colleagues decipher a far-reaching problem in computer simulations

Because modern computers have to depict the real world with digital representations of numbers instead of physical analogues, to simulate the continuous passage of time they have to digitize time into small slices. This kind of simulation is essential in disciplines from medical and biological research, to new materials, to fundamental considerations of quantum mechanics, and the fact that it inevitably introduces errors is an ongoing problem for scientists.

Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now identified and characterized the source of tenacious errors and come up with a way to separate the realistic aspects of a simulation from the artifacts of the computer method. The research was done by David Sivak and his advisor Gavin Crooks in Berkeley Lab’s Physical Biosciences Division and John Chodera, a colleague at the California Institute of Quantitative Biosciences (QB3) at the University of California at Berkeley. The three report their results in Physical Review X. (more…)

Read More