Tag Archives: carbon atom

Flawed Diamonds: Gems for New Technology

Using ultra-fast laser pulses, a team of researchers led by UA assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds containing nitrogen-vacancy centers – promising candidates for a variety of technological advances such as quantum computing.

A team of researchers led by University of Arizona assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds that contain nitrogen-vacancy centers – defects in which two adjacent carbon atoms in the diamond’s crystal structure are replaced by a single nitrogen atom and an empty gap. (more…)

Read More

Graphene Membranes May Lead To Enhanced Natural Gas Production, Less CO2 Pollution, Says CU Study

Engineering faculty and students at the University of Colorado Boulder have produced the first experimental results showing that atomically thin graphene membranes with tiny pores can effectively and efficiently separate gas molecules through size-selective sieving.

The findings are a significant step toward the realization of more energy-efficient membranes for natural gas production and for reducing carbon dioxide emissions from power plant exhaust pipes.

Mechanical engineering professors Scott Bunch and John Pellegrino co-authored a paper in Nature Nanotechnology with graduate students Steven Koenig and Luda Wang detailing the experiments. The paper was published Oct. 7 in the journal’s online edition. (more…)

Read More

A Direct Look at Graphene

Direct Imaging by Berkeley Lab Researchers Confirms the Importance of Electron-Electron Interactions in Graphene

Perhaps no other material is generating as much excitement in the electronics world as graphene, sheets of pure carbon just one atom thick through which electrons can race at nearly the speed of light – 100 times faster than they move through silicon. Superthin, superstrong, superflexible and superfast as an electrical conductor, graphene has been touted as a potential wonder material for a host of electronic applications, starting with ultrafast transistors. For the vast potential of graphene to be fully realized, however, scientists must first learn more about what makes graphene so super. The latest step in this direction has been taken by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

Michael Crommie, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department, led a study in which the first direct observations at microscopic lengths were recorded of how electrons and holes respond to a charged impurity – a single Coulomb potential – placed on a gated graphene device. The results provide experimental support to the theory that interactions between electrons are critical to graphene’s extraordinary properties. (more…)

Read More

Graphene and DNA

‘Wonder material’ may hold key to fast, inexpensive genetic sequencing

Look at the tip of that old pencil in your desk drawer, and what you’ll see are layers of graphite that are thousands of atoms thick. Use the pencil to draw a line on a piece of paper, and the mark you’ll see on the page is made up of hundreds of one-atom layers.

But when scientists found a way—using, essentially, a piece of ordinary sticky tape—to peel off a layer of graphite that was just a single atom thick, they called the two-dimensional material graphene and, in 2010, won the Nobel Prize in physics for the discovery. (more…)

Read More

Listen to Solar Storm Activity in New Sonification Video

ANN ARBOR, Mich.— What does a solar storm sound like? To get an idea, a University of Michigan researcher has created a “sonification” of measurements from two spacecraft during the most recent storm. Take a listen in this video.

The researcher who created it is Robert Alexander, a University of Michigan design science doctoral student. Alexander is a composer with a NASA fellowship to study how representing information as sound could aid in data mining. (more…)

Read More