Tag Archives: energy-efficient

Berkeley Lab Scientists Developing Paint-on Coating for Energy Efficient Windows

Low-cost coating would disrupt the building retrofit market and potentially save billions in electricity.

It’s estimated that 10 percent of all the energy used in buildings in the U.S. can be attributed to window performance, costing building owners about $50 billion annually, yet the high cost of replacing windows or retrofitting them with an energy efficient coating is a major deterrent. U.S. Dept. of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) researchers are seeking to address this problem with creative chemistry—a polymer heat-reflective coating that can be painted on at one-tenth the cost. (more…)

Read More

New research examines shellfish consumption

A pioneering Cornish research partnership is providing invaluable information to the UK’s shellfish industry by improving understanding of what seafood people choose to eat and why.

University of Exeter Medical School PhD student, Nick Boase, is conducting surveys across the country to shed light on what people understand about shellfish, and uncover reasons why they might shy away from consuming produce grown in the UK. (more…)

Read More

Magnetic topological insulators developed at UCLA are 1,000 times more energy-efficient for switching

Topological insulators are an emerging class of materials that act as both insulators and conductors, and could potentially be used in smartphones, computers and other electronic devices.

A research team at the UCLA Henry Samueli School of Engineering and Applied Science has developed a new class of topological insulators in which one of two layers is magnetized. The advance could lead to the development of much more energy-efficient big-data processing systems and ultra-low power electronics. (more…)

Read More

Scientists build thinnest-possible LEDs to be stronger, more energy efficient

Most modern electronics, from flat-screen TVs and smartphones to wearable technologies and computer monitors, use tiny light-emitting diodes, or LEDs. These LEDs are based off of semiconductors that emit light with the movement of electrons. As devices get smaller and faster, there is more demand for such semiconductors that are tinier, stronger and more energy efficient.

University of Washington scientists have built the thinnest-known LED that can be used as a source of light energy in electronics. The LED is based off of two-dimensional, flexible semiconductors, making it possible to stack or use in much smaller and more diverse applications than current technology allows. (more…)

Read More

A Micro-Muscular Break Through

Berkeley Lab Researchers Make a Powerful New Microscale Torsional Muscle/Motor from Vanadium Dioxide

Vanadium dioxide is poised to join the pantheon of superstars in the materials world. Already prized for its extraordinary ability to change size, shape and physical identity, vanadium dioxide can now add muscle power to its attributes. A team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has demonstrated a micro-sized robotic torsional muscle/motor made from vanadium dioxide that for its size is a thousand times more powerful than a human muscle, able to catapult objects 50 times heavier than itself over a distance five times its length within 60 milliseconds –  faster than the blink of an eye. (more…)

Read More

The 2014 Solar Decathlon Europe: Brown/RISD/Erfurt team designs Techstyle Haus

Students at Brown, RISD, and the University of Erfurt are tackling a great challenge: Build a house that uses 90 percent less energy than a typical house, make it liveable, flexible, durable, and lightweight enough to be shipped from Providence to France — and design it better than 19 other top teams from around the world. That’s the Solar Decathlon. The Brown-RISD-Erfurt team calls its entry the “Techstyle Haus.”

PROVIDENCE, R.I. [Brown University] — For two weeks next July, the grounds of France’s Palace of Versailles will be transformed into a solar-powered village, showcasing sustainable homes built by college students from around the world. Among them will be a house like no other, with a roof and walls made not of wood or metal, but almost entirely of durable, highly insulated textiles. (more…)

Read More

Elevated Indoor Carbon Dioxide Impairs Decision-Making Performance

Berkeley Lab scientists surprised to find significant adverse effects of CO2 on human decision-making performance.

Overturning decades of conventional wisdom, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have found that moderately high indoor concentrations of carbon dioxide (CO2) can significantly impair people’s decision-making performance. The results were unexpected and may have particular implications for schools and other spaces with high occupant density.

“In our field we have always had a dogma that CO2 itself, at the levels we find in buildings, is just not important and doesn’t have any direct impacts on people,” said Berkeley Lab scientist William Fisk, a co-author of the study, which was published in Environmental Health Perspectives online last month. “So these results, which were quite unambiguous, were surprising.” The study was conducted with researchers from State University of New York (SUNY) Upstate Medical University. (more…)

Read More

Another Advance on the Road to Spintronics

Berkeley Lab Researchers Unlock Ferromagnetic Secrets of Promising Materials

Spintronic technology, in which data is processed on the basis of electron “spin” rather than charge, promises to revolutionize the computing industry with smaller, faster and more energy efficient data storage and processing. Materials drawing a lot of attention for spintronic applications are dilute magnetic semiconductors – normal semiconductors to which a small amount of magnetic atoms is added to make them ferromagnetic. Understanding the source of ferromagnetism in dilute magnetic semiconductors has been a major road-block impeding their further development and use in spintronics. Now a significant step to removing this road-block has been taken.

A multi-institutional collaboration of researchers led by scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), using a new technique called HARPES, for Hard x-ray Angle-Resolved PhotoEmission Spectroscopy, has investigated the bulk electronic structure of the prototypical dilute magnetic semiconductor gallium manganese arsenide. Their findings show that the material’s ferromagnetism arises from both of the two different mechanisms that have been proposed to explain it. (more…)

Read More