Tag Archives: leds

Scientists build thinnest-possible LEDs to be stronger, more energy efficient

Most modern electronics, from flat-screen TVs and smartphones to wearable technologies and computer monitors, use tiny light-emitting diodes, or LEDs. These LEDs are based off of semiconductors that emit light with the movement of electrons. As devices get smaller and faster, there is more demand for such semiconductors that are tinier, stronger and more energy efficient.

University of Washington scientists have built the thinnest-known LED that can be used as a source of light energy in electronics. The LED is based off of two-dimensional, flexible semiconductors, making it possible to stack or use in much smaller and more diverse applications than current technology allows. (more…)

Read More

New Technique May Open Up an Era of Atomic-scale Semiconductor Devices

Researchers at North Carolina State University have developed a new technique for creating high-quality semiconductor thin films at the atomic scale – meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

“This could be used to scale current semiconductor technologies down to the atomic scale – lasers, light-emitting diodes (LEDs), computer chips, anything,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper on the work. “People have been talking about this concept for a long time, but it wasn’t possible. With this discovery, I think it’s possible.” (more…)

Read More

Energy-momentum Spectroscopy: New Technique Could Improve Optical Devices

Understanding the source and orientation of light in light-emitting thin films — now possible with energy-momentum spectroscopy — could lead to better LEDs, solar cells, and other devices that use layered nanomaterials.

PROVIDENCE, R.I. [Brown University] — A multi-university research team has used a new spectroscopic method to gain a key insight into how light is emitted from layered nanomaterials and other thin films.

The technique, called energy-momentum spectroscopy, enables researchers to look at the light emerging from a thin film and determine whether it is coming from emitters oriented along the plane of the film or from emitters oriented perpendicular to the film. Knowing the orientations of emitters could help engineers make better use of thin-film materials in optical devices like LEDs or solar cells. (more…)

Read More

With Random Lasers, Yale Researchers Fight Random Noise, Improve Imaging

Using “random lasers” as a source of illumination in medical imaging equipment could improve both processing time and the clarity of the final images, according to new research by Yale University scientists.

Imaging systems currently rely on a variety of light sources — specialty light bulbs, light-emitting diodes (LEDs), and traditional lasers. But systems using traditional lasers, the brightest of these light sources, often yield undesirable visual byproducts that mar the final picture. One common byproduct, speckle, looks something like a snowfall pattern. (more…)

Read More

Building A Better Trap

Fieldwork in Peru’s Andes Mountains is demanding, especially when it involves hauling heavy equipment to remote sites that are accessible only by traversing the region’s rugged terrain.

But the task of collecting insects for the study of vector-borne diseases and other purposes has become a little less onerous since a Yale School of Public Health researcher and colleagues designed a lighter — and perhaps better — trap. (more…)

Read More