Tag Archives: photon

Electron-photon small-talk could have big impact on quantum computing

In a step that brings silicon-based quantum computers closer to reality, researchers at Princeton University have built a device in which a single electron can pass its quantum information to a particle of light. The particle of light, or photon, can then act as a messenger to carry the information to other electrons, creating connections that form the circuits of a quantum computer.  (more…)

Read More

Verbesserte Schnittstelle für Quanten-Internet

Ein Quantennetzwerk benötigt effiziente Schnittstellen, über die Information von Materie auf Licht und umgekehrt übertragen werden kann. Wie dieser Informationstransfer unter Ausnutzung eines kollektiven Quantenphänomens optimiert werden kann, zeigen Innsbrucker Physiker um Rainer Blatt und Tracy Northup nun in der Fachzeitschrift Physical Review Letters. (more…)

Read More

Tübinger Physiker ebnen den Weg zum Bau von Quantenschnittstellen

Wechselwirkung von Licht und Materie wird auf der Ebene einzelner Photonen kontrolliert

Einer Forschergruppe um den Juniordozenten Dr. Sebastian Slama vom Physikalischen Institut der Universität Tübingen ist es erstmals gelungen, die Fluoreszenz von ultrakalten Atomen gezielt in sogenannte Oberflächen-Plasmonen zu lenken. Als Plasmonen bezeichnen Physiker Lichtwellen, die sich auf einer metallischen Oberfläche ausbreiten – ähnlich wie Elektronen in einem Draht fließen. Ziel in der Quantenforschung sind winzige Systeme, in denen etwa die Wechselwirkungen von Licht und Materie auf der Ebene einzelner Lichtquanten, den Photonen, kontrolliert werden können. Aus solchen kontrollierten Systemen ergeben sich viele mögliche Anwendungen, wie zum Beispiel Schalter und Transistoren, die auf einem einzelnen Photon beruhen. (more…)

Read More

Kasseler Physiker weisen nach: Elektron gleichzeitig an zwei verschiedenen Orten

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“ Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“ Die Ergebnisse veröffentlichte die Gruppe jetzt im Fachjournal „Physical Review Letters“; beteiligt waren neben Ehresmann und Knie Wissenschaftlerinnen und Wissenschaftler der Universitäten Triest, Berlin (FU) und Riad sowie des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und des Deutschen Elektronen-Synchrotrons DESY. (more…)

Read More

A new way to make laser-like beams using 250x less power

ANN ARBOR — With precarious particles called polaritons that straddle the worlds of light and matter, University of Michigan researchers have demonstrated a new, practical and potentially more efficient way to make a coherent laser-like beam.

They have made what’s believed to be the first polariton laser that is fueled by electrical current as opposed to light, and also works at room temperature, rather than way below zero. (more…)

Read More

New Details on the Molecular Machinery of Cancer

Berkeley Lab Researchers Resolve EGFR Activation Mystery

Researchers with Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have provided important new details into the activation of the epidermal growth factor receptor (EGFR), a cell surface protein that has been strongly linked to a large number of cancers and is a major target of cancer therapies.

“The more we understand about EGFR and the complex molecular machinery involved in the growth and proliferation of cells, the closer we will be to developing new and more effective ways to cure and treat the many different forms of cancer,” says chemist Jay Groves, one of the leaders of this research. “Through a tour-de-force of quantitative biology techniques that included cutting edge time-resolved fluorescence spectroscopy in living cells, Nuclear Magnetic Resonance, and computational modeling, we’ve determined definitively how EGFR becomes activated through to its epidermal growth factor (EGF) ligand.” (more…)

Read More

State-of-the-Art Beams from Table-Top Accelerators

Berkeley Lab’s lead in laser plasma acceleration research continues with new benchmarks for electron beam quality

Part One: Focusing in on beam focus

The rapidly evolving technology of laser plasma accelerators (LPAs) – called “table-top accelerators” because their length can be measured in centimeters instead of kilometers – promises a new breed of machines, far less expensive and with far less impact on the land and the environment than today’s conventional accelerators.

Future LPAs offer not only compact high-energy colliders for fundamental physics but diminutive light sources as well. These will probe chemical reactions, from artificial photosynthesis to “green catalysis”; unique biological structures, inaccessible to other forms of microscopy yet essential to understanding life and health; and new materials, including low-temperature superconductors, topological insulators, spintronics devices, and graphene nanostructures, which will revolutionize the electronics industry. With intensely bright beams spanning the spectrum from microwaves to gamma rays, table-top accelerators will open new vistas of science. (more…)

Read More

Interstellar Travelers of the Future May be Helped by MU Physicist’s Calculations

University of Missouri’s Sergei Kopeikin may have solved the Pioneer anomaly

COLUMBIA, Mo. – Former President Bill Clinton recently expressed his support for interstellar travel at the 100 Year Spaceship Symposium, an international event advocating for human expansion into other star systems. Interstellar travel will depend upon extremely precise measurements of every factor involved in the mission. The knowledge of those factors may be improved by the solution a University of Missouri researcher found to a puzzle that has stumped astrophysicists for decades.

“The Pioneer spacecraft, two probes launched into space in the early 70s, seemed to violate the Newtonian law of gravity by decelerating anomalously as they traveled, but there was nothing in physics to explain why this happened,” said Sergei Kopeikin, professor of physics and astronomy in MU’s College of Arts and Science. “My study suggests that this so-called Pioneer anomaly was not anything strange. The confusion can be explained by the effect of the expansion of the universe on the movement of photons that make up light and radio waves.” (more…)

Read More