Tag Archives: researcher

Video games and body image

UD researcher explores player reactions to characters’ exaggerated physiques

College students playing Japanese fighting video games often object to the unrealistic depictions of the characters, drawn with exaggerated and highly sexualized physiques, but they say the mechanics of the game itself are more important to them. (more…)

Read More

Intervention Helps Decrease “Mean Girl” Behaviors, MU Researchers Find

Combination of group counseling, caregiver training reduces relational aggression in teen girls

COLUMBIA, Mo. – Relational aggression, or “mean girl” bullying, is a popular subject in news and entertainment media. This nonphysical form of aggression generally used among adolescent girls includes gossiping, rumor spreading, exclusion and rejection. As media coverage has illustrated, relational aggression can lead to tragic and sometimes fatal outcomes. Despite these alarming concerns, little has been done to prevent and eliminate these negative behaviors. Now, University of Missouri researchers have developed and tested an intervention that effectively decreases relational aggression among teen girls. (more…)

Read More

Berkeley Lab Researchers Create Nanoparticle Thin Films That Self-Assemble in One Minute

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Ting Xu, a polymer scientist with Berkeley Lab’s Materials Sciences Division, led a study in which supramolecules based on block copolymers were combined with gold nanoparticles to create nanocomposites that under solvent annealing quickly self-assembled into hierarchically-structured thin films spanning an area of several square centimeters. The technique is compatible with current nanomanufacturing processes and has the potential to generate new families of optical coatings for applications in a wide number of areas including solar energy, nanoelectronics and computer memory storage. This technique could even open new avenues to the fabrication of metamaterials, artificial nanoconstructs that possess remarkable optical properties. (more…)

Read More

Mystery of 1918 Pandemic Flu Virus Solved by UA Researchers

University of Arizona researcher Michael Worobey and his team have discovered that the key to understanding influenza pandemics may lie in flu exposure during childhood.

Just as the world was recovering from the devastation of World War I, another killer swept across the globe. A deadly flu virus attacked more than one-third of the world’s population, and within months had killed more than 50 million people – three times as many as the war – and had done it more quickly than any other illness in recorded history. (more…)

Read More

Researchers Find Simple, Cheap Way to Increase Solar Cell Efficiency

Researchers from North Carolina State University and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30 percent.

Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material. Excitons are the energy particles created by solar cells when light is absorbed. In order to be harnessed effectively as an energy source, excitons must be able to travel quickly to the interface of the donor and acceptor domains and retain as much of the light’s energy as possible. (more…)

Read More

Snow melts faster under trees than in open areas in mild climates

It’s a foggy fall morning, and University of Washington researcher Susan Dickerson-Lange pokes her index finger into the damp soil beneath a canopy of second-growth conifers. The tree cover is dense here, and little light seeps in among the understory of the Cedar River Municipal Watershed about 30 miles east of Seattle.

She digs a small hole in the leaf-litter soil, then pushes a thumb-sized device, called an iButton, about an inch beneath the surface. If all goes well, this tiny, battery-powered instrument will collect a temperature reading every hour for 11 months. Researchers hope this tool and a handful of other instruments will help them map winter temperatures throughout the watershed as they track snow accumulation and melt. (more…)

Read More

Moth-Inspired Nanostructures Take the Color Out of Thin Films

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the “thin-film interference” phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

Thin-film interference occurs when a thin film of one substance lies on top of a second substance. For example, thin-film interference is what causes the rainbow sheen we see when there is gasoline in a puddle of water. (more…)

Read More