Tag Archives: water vapor

Decoding the Skies: The Impact of Water Vapor on Afternoon Rainfall

The role of incoming water vapor in rainfall has been a complex area of study, but new research shows water vapor is a vital piece of the puzzle.

The role that atmospheric water vapor plays in weather is complex and not clearly understood. However, University of Arizona researchers have started to tease out the relationship between morning soil moisture and afternoon rainfall under different atmospheric conditions in a new study in the journal Geophysical Research Letters. (more…)

Read More

Where does water go when it doesn’t flow?

Study shows how much enters air from plants, soil, surface water

More than a quarter of the rain and snow that falls on continents reaches the oceans as runoff. Now a new study helps show where the rest goes: two-thirds of the remaining water is released by plants, more than a quarter lands on leaves and evaporates and what’s left evaporates from soil and from lakes, rivers and streams. (more…)

Read More

UChicago researchers use Hubble Telescope to reveal cloudy weather on alien world

Weather forecasters on exoplanet GJ 1214b would have an easy job. Today’s forecast: cloudy. Tomorrow: overcast. Extended outlook: more clouds.

That’s the implication of a study led by researchers in the Department of Astronomy and Astrophysics at the University of Chicago who have definitively characterized the atmosphere of a super-Earth class planet orbiting another star for the first time. (more…)

Read More

Hubble Sees Evidence of Water Vapor at Jupiter Moon

NASA’s Hubble Space Telescope has observed water vapor above the frigid south polar region of Jupiter’s moon Europa, providing the first strong evidence of water plumes erupting off the moon’s surface.

Previous scientific findings from other sources already point to the existence of an ocean located under Europa’s icy crust. Researchers are not yet fully certain whether the detected water vapor is generated by erupting water plumes on the surface, but they are confident this is the most likely explanation. (more…)

Read More

NASA Probe Gets Close-Up Views of Large Hurricane on Saturn

PASADENA, Calif. – NASA’s Cassini spacecraft has provided scientists the first close-up, visible-light views of a behemoth hurricane swirling around Saturn’s north pole.

In high-resolution pictures and video, scientists see the hurricane’s eye is about 1,250 miles (2,000 kilometers) wide, 20 times larger than the average hurricane eye on Earth. Thin, bright clouds at the outer edge of the hurricane are traveling 330 mph(150 meters per second). The hurricane swirls inside a large, mysterious, six-sided weather pattern known as the hexagon. (more…)

Read More

CU-led Mountain Forest Study Shows Vulnerability to Climate Change

A new University of Colorado Boulder-led study that ties forest “greenness” in the western United States to fluctuating year-to-year snowpack indicates mid-elevation mountain ecosystems are most sensitive to rising temperatures and changes in precipitation and snowmelt.

Led by CU-Boulder researcher Ernesto Trujillo and Assistant Professor Noah Molotch, the study team used the data — including satellite images and ground measurements — to identify the threshold where mid-level forests sustained primarily by moisture change to higher-elevation forests sustained primarily by sunlight and temperature. Being able to identify this “tipping point” is important because it is in the mid-level forests — at altitudes from roughly 6,500 to 8,000 feet — where many people live and play in the West and which are associated with increasing wildfires, beetle outbreaks and increased tree mortality, said Molotch. (more…)

Read More

Salt Seeds Clouds in the Amazon Rainforest

It’s morning, deep in the Amazon jungle. In the still air innumerable leaves glisten with moisture, and fog drifts through the trees. As the sun rises, clouds appear and float across the forest canopy … but where do they come from? Water vapor needs soluble particles to condense on. Airborne particles are the seeds of liquid droplets in fog, mist, and clouds.

To learn how aerosol particles form in the Amazon, Mary Gilles of the Chemical Sciences Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and David Kilcoyne of the Lab’s Advanced Light Source (ALS) worked with Christopher Pöhlker of Germany’s Max Planck Institute for Chemistry (MPIC) as part of an international team of scientists led by MPIC’s Meinrat Andreae and Ulrich Pöschl. They analyzed samples of naturally formed aerosols collected above the forest floor, deep in the rainforest. (more…)

Read More

Wind Power’s Potential

UD-Stanford team calculates maximum global energy potential from wind

Wind turbines could power half the world’s future energy demands with minimal environmental impact, according to new research published by University of Delaware and Stanford University scientists in the Proceedings of the National Academy of Sciences.

The researchers arrived at the determination by calculating the maximum theoretical potential of wind power worldwide, taking into account the effects that numerous wind turbines would have on surface temperatures, water vapor, atmospheric circulations and other climatic considerations.

“Wind power is very safe from the climate point of view,” said Cristina Archer, associate professor of geography and physical ocean science and engineering at UD. (more…)

Read More