Tag Archives: receptor

New Treatment for Allergic Response Targets Mast Cells

Researchers from North Carolina State University and the National Institutes of Health (NIH) have developed a method that stops allergic reactions by removing a key receptor from mast cells and basophils. Their work has implications for the treatment of skin allergies and asthma. (more…)

Read More

Drug-resistant lung cancer may have Achilles heel

Drugs introduced more than a decade ago that target mutations in a protein known as the epidermal growth factor receptor (EGFR) held the promise of personalized treatments for a common form of non-small cell lung cancer. But most patients quickly develop resistance to these drugs and are left with few or no treatment options, because it has been very difficult to design new drugs that act selectively upon the drug-resistant form.  (more…)

Read More

Fat cells in breast may connect social stress to breast cancer

Local chemical signals released by fat cells in the mammary gland appear to provide a crucial link between exposure to unrelenting social stressors early in life, and the subsequent development of breast cancer, researchers from the University of Chicago report in the July 2013 issue of the journal Cancer Prevention Research.

Some forms of stress exposure may be associated with an increased risk of certain types of aggressive breast cancer. But the mechanisms linking the biology of social stress to cancer have been hard to identify. To unravel that mechanism, the researchers looked for differences between mice raised in small groups and those that grow up in an isolated setting—an established model of chronic stress without social supports. (more…)

Read More

Stay Cool and Live Longer?

ANN ARBOR — Scientists have known for nearly a century that cold-blooded animals, such as worms, flies and fish all live longer in cold environments, but have not known exactly why.

Researchers at the University of Michigan Life Sciences Institute have identified a genetic program that promotes longevity of roundworms in cold environments—and this genetic program also exists in warm-blooded animals, including humans. (more…)

Read More

New Details on the Molecular Machinery of Cancer

Berkeley Lab Researchers Resolve EGFR Activation Mystery

Researchers with Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have provided important new details into the activation of the epidermal growth factor receptor (EGFR), a cell surface protein that has been strongly linked to a large number of cancers and is a major target of cancer therapies.

“The more we understand about EGFR and the complex molecular machinery involved in the growth and proliferation of cells, the closer we will be to developing new and more effective ways to cure and treat the many different forms of cancer,” says chemist Jay Groves, one of the leaders of this research. “Through a tour-de-force of quantitative biology techniques that included cutting edge time-resolved fluorescence spectroscopy in living cells, Nuclear Magnetic Resonance, and computational modeling, we’ve determined definitively how EGFR becomes activated through to its epidermal growth factor (EGF) ligand.” (more…)

Read More

Loss of Appetite Deciphered in Brain Cell Circuit

The meal is pushed way, untouched. Loss of appetite can be a fleeting queasiness or continue to the point of emaciation. While it’s felt in the gut, more is going on inside the head.

New findings are emerging about brain and body messaging pathways that lead to loss of appetite, and the systems in place to avoid starvation. (more…)

Read More

In Lab, Pannexin1 Restores Tight Binding of Cells Lost in Cancer

*By studying tumor cell behavior in a novel “scaffold-free” 3-D system, researchers have determined that the protein Pannexin1 may play an important biomechanical role in binding tissues together, an effect that is lost in cancerous cells.*

PROVIDENCE, R.I. [Brown University] — First there is the tumor and then there’s the horrible question of whether the cancerous cells will spread. Scientists increasingly believe that the structural properties of the tumor itself, such as how tightly the tumor cells are packed together, play a decisive role in the progression of the disease. In a new study, researchers show that the protein Pannexin1, known to have tumor-suppressive properties, plays an important role in keeping the cells within a tissue closely packed together, an effect that may be lost with cancer.

“In healthy tissues, the recently discovered protein Pannexin1 may be playing an important role in upholding the mechanical integrity of the tissue,” said first author and Brown University M.D./Ph.D. student Brian Bao. “When we develop cancer, we lose Pannexin1 and we lose this integrity.” (more…)

Read More

Chemists Unlock Potential Target For Drug Development

EAST LANSING, Mich. — A receptor found on blood platelets whose importance as a potential pharmaceutical target has long been questioned may in fact be fruitful in drug testing, according to new research from Michigan State University chemists.

A team led by Dana Spence of MSU’s Department of Chemistry has revealed a way to isolate and test the receptor known as P2X1. By creating a new, simple method to study it after blood is drawn, the team has unlocked a potential new drug target for many diseases that impact red blood cells, such as diabetes, hypertension and cystic fibrosis. (more…)

Read More