Temperature has increased about 10-fold over the last 10 billion years
The universe is getting hotter, a new study has found.
The study, published Oct. 13 in the Astrophysical Journal, probed the thermal history of the universe over the last 10 billion years. It found that the mean temperature of gas across the universe has increased more than 10 times over that time period and reached about 2 million degrees Kelvin today — approximately 4 million degrees Fahrenheit.(more…)
Matthew Green is an assistant professor of physics at NC State. He was involved in a multi-institutional research project aimed at detecting a process called Coherent Elastic Neutrino Nuclear Scattering (CEvNS). The project was successful, and its findings appear in Science. Matthew agreed to a Q&A with The Abstract on the project and its results.(more…)
Berkeley Lab is leading the construction of a mile-deep experiment that seeks to solve a science mystery
The race is on to build the most sensitive U.S.-based experiment designed to directly detect dark matter particles. Department of Energy officials have formally approved a key construction milestone that will propel the project toward its April 2020 goal for completion.(more…)
There may be far fewer galaxies further out in the universe then might be expected, according to a new study led by Michigan State University.
Over the years, the Hubble Space Telescope has allowed astronomers to look deep into the universe. The long view stirred theories of untold thousands of distant, faint galaxies. The new research, appearing in the current issue of the Astrophysical Journal Letters, however, offers a theory that reduces the estimated number of the most distant galaxies by 10 to 100 times.(more…)
Project’s success spawns a new effort to study other local sky events
SEATTLE — While many astronomical collaborations use powerful telescopes to target individual objects in the distant universe, a new project at The Ohio State University is doing something radically different: using small telescopes to study a growing portion of the nearby universe all at once. (more…)
Daya Bay neutrino experiment publishes a new result on its first search for a “sterile” neutrino
BEIJING; BERKELEY, CA; and UPTON, NY—The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called sterile neutrino, a possible new type of neutrino beyond the three known neutrino “flavors,” or types. The existence of this elusive particle, if proven, would have a profound impact on our understanding of the universe, and could impact the design of future neutrino experiments. The new results, appearing in the journal Physical Review Letters, show no evidence for sterile neutrinos in a previously unexplored mass range. (more…)
New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.
The study published in TheAstrophysical Journal Letters by UCL cosmologists Dr Andrew Pontzen and Dr Hiranya Peiris (both UCL Physics & Astronomy), together with collaborators at Princeton and Barcelona Universities, shows how forthcoming astronomical surveys will reveal what lit up the cosmos.(more…)