When a batch of bright cosmic objects first appeared in maps in 2008 made with data from the South Pole Telescope, astronomers at the University of Chicago’s Kavli Institute for Cosmological Physics regarded it only as an unavoidable nuisance.
The light sources interfered with efforts to measure more precisely the cosmic microwave background—the afterglow of the big bang. But the astronomers soon realized that they had made a rare find in South Pole Telescope’s large survey of the sky. The spectra of some of the bright objects, which is the rainbow of light they emit, were inconsistent with what astronomers expected from the well-known population of radio galaxies. (more…)
PASADENA, Calif. — Two X-ray space observatories, NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency’s XMM-Newton, have teamed up to measure definitively, for the first time, the spin rate of a black hole with a mass 2 million times that of our sun.
The supermassive black hole lies at the dust- and gas-filled heart of a galaxy called NGC 1365, and it is spinning almost as fast as Einstein’s theory of gravity will allow. The findings, which appear in a new study in the journal Nature, resolve a long-standing debate about similar measurements in other black holes and will lead to a better understanding of how black holes and galaxies evolve. (more…)
The long-sought Higgs boson—the particle that endows all elementary particles in the universe with mass—was elusive no longer when scientists at the CERN physics laboratory in Switzerland, discovered it last summer.(more…)
ANN ARBOR — In a study that gives astronomers new insights into how planets form, research led by the University of Michigan has enabled a dramatically more precise measurement of the amount of dust and gas in the planet-forming disk around a young star.
The findings speak, in a way, to a fundamental question: “Why are we here?” (more…)
NASA funds astrobiology research by Delaware Biotechnology Institute scientist
Does life exist anywhere else in the universe? That’s the type of broad but poignant question NASA likes to ask, according to Chandran Sabanayagam, associate scientist in the Bioimaging Center at the Delaware Biotechnology Institute (DBI). And he would know, because he’s preparing to help answer it.
NASA will receive $100 billion from the federal government over the next five years to assure America is number one in space exploration, according to Astrobiology.com. As part of its push to seek new partnerships and broaden its vision, NASA is offering grants to people conducting transformational science. With this opportunity, Sabanayagam is merging his love of physics and biology. (more…)
Berkeley Lab Researchers Propose a Way to Build the First Space-Time Crystal
Imagine a clock that will keep perfect time forever, even after the heat-death of the universe. This is the “wow” factor behind a device known as a “space-time crystal,” a four-dimensional crystal that has periodic structure in time as well as space. However, there are also practical and important scientific reasons for constructing a space-time crystal. With such a 4D crystal, scientists would have a new and more effective means by which to study how complex physical properties and behaviors emerge from the collective interactions of large numbers of individual particles, the so-called many-body problem of physics. A space-time crystal could also be used to study phenomena in the quantum world, such as entanglement, in which an action on one particle impacts another particle even if the two particles are separated by vast distances.
A space-time crystal, however, has only existed as a concept in the minds of theoretical scientists with no serious idea as to how to actually build one – until now. An international team of scientists led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge. (more…)
Analysis of data from the National Science Foundation’s South Pole Telescope, for the first time, more precisely defines the period of cosmological evolution when the first stars and galaxies formed and gradually illuminated the universe. The data indicate that this period, called the epoch of reionization, was shorter than theorists speculated — and that it ended early.
“We find that the epoch of reionization lasted less than 500 million years and began when the universe was at least 250 million years old,” said Oliver Zahn, a postdoctoral fellow at the Berkeley Center for Cosmological Physics at the University of California, Berkeley, who led the study. “Before this measurement, scientists believed that reionization lasted 750 million years or longer, and had no evidence as to when reionization began.” (more…)
Astronomers have witnessed for the first time a spiral galaxy in the early universe, billions of years before many other spiral galaxies formed. In findings reported July 19 in the journal Nature, the astronomers said they discovered it while using the Hubble Space Telescope to take pictures of about 300 very distant galaxies in the early universe and to study their properties. This distant spiral galaxy is being observed as it existed roughly three billion years after the Big Bang, and light from this part of the universe has been traveling to Earth for about 10.7 billion years.
“As you go back in time to the early universe, galaxies look really strange, clumpy and irregular, not symmetric,” said Alice Shapley, a UCLA associate professor of physics and astronomy, and co-author of the study. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?” (more…)