Scientific collaboration including UChicago and labs releases three years of data
Scientists have released the preliminary cosmological findings from the Dark Energy Survey—research on about 400 million astronomical objects, including distant galaxies as well as stars in our own galaxy.(more…)
What do Velcro, Tang, penicillin, the structure of DNA and the World Wide Web have in common?
They all involved serendipitous discoveries—chance discoveries made by alert, curious scientists who were looking for other things when they happened across a fortuitous finding. Rather than ignoring their accidental discoveries, these curious, open-minded scientists harnessed their luck. “Chance favors only the prepared mind,” as Louis Pasteur put it. (more…)
Our Sun may seem pretty impressive: 330,000 times as massive as Earth, it accounts for 99.86 percent of the Solar System’s total mass; it generates about 400 trillion trillion watts of power; and it has a surface temperature of about 10,000 degrees Fahrenheit. Yet for a star, it’s a lightweight. (more…)
Speeding at 1 Million mph, It Probes Black Hole and Dark Matter
A University of Utah-led team discovered a “hypervelocity star” that is the closest, second-brightest and among the largest of 20 found so far. Speeding at more than 1 million mph, the star may provide clues about the supermassive black hole at the center of our Milky Way and the halo of mysterious “dark matter” surrounding the galaxy, astronomers say. (more…)
AUSTIN, Texas — A team of researchers led by astronomer Ivan Ramirez of The University of Texas at Austin has identified the first “sibling” of the sun — a star almost certainly born from the same cloud of gas and dust as our star. Ramirez’s methods will help astronomers find other solar siblings, which could lead to an understanding of how and where our sun formed, and how our solar system became hospitable for life. The work appears in the June 1 issue of The Astrophysical Journal.
“We want to know where we were born,” Ramirez said. “If we can figure out in what part of the galaxy the sun formed, we can constrain conditions on the early solar system. That could help us understand why we are here.” (more…)
On January 24, the journal Nature published an article entitled “There are no black holes.” 1 It doesn’t take much to spark controversy in the world of physics…But what does this really mean? In a brief article published on arXiv, a scientific preprint server, Stephen Hawking proposed a theory of black holes that could reconcile the principles of general relativity and quantum physics.
To better understand Hawking’s remarks, Forum interviewed Robert Lamontagne, an astrophysicist at the Department of Physics, Université de Montréal, and Executive Director of the Observatoire du Mont-Mégantic.
Using one of the world’s premier telescopes, University of Minnesota astrophysicists Evan Skillman and Kristen McQuinn have discovered a priceless relic of the Big Bang in the Milky Way’s back yard.
They are part of an international team that found Leo P, a tiny galaxy in the constellation Leo that contains relatively few stars, but has large clouds of hydrogen and helium. The ratio of elements in those clouds is of great interest because it is believed to mirror conditions in the first few minutes after the Big Bang. (more…)