Tag Archives: vanadium dioxide

A Micro-Muscular Break Through

Berkeley Lab Researchers Make a Powerful New Microscale Torsional Muscle/Motor from Vanadium Dioxide

Vanadium dioxide is poised to join the pantheon of superstars in the materials world. Already prized for its extraordinary ability to change size, shape and physical identity, vanadium dioxide can now add muscle power to its attributes. A team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has demonstrated a micro-sized robotic torsional muscle/motor made from vanadium dioxide that for its size is a thousand times more powerful than a human muscle, able to catapult objects 50 times heavier than itself over a distance five times its length within 60 milliseconds –  faster than the blink of an eye. (more…)

Read More

Physicists pinpoint key property of material that both conducts and insulates

It is well known to scientists that the three common phases of water – ice, liquid and vapor – can exist stably together only at a particular temperature and pressure, called the triple point.

Also well known is that the solid form of many materials can have numerous phases, but it is difficult to pinpoint the temperature and pressure for the points at which three solid phases can coexist stably. (more…)

Read More

Flexing Fingers for Micro-Robotics: Berkeley Lab Scientists Create a Powerful, Microscale Actuator

Berkeley, Calif., Dec. 2012 — Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger. Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

“We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells,” says Berkeley Lab and UC Berkeley scientist Junqiao Wu. “What’s more, it uses this very interesting material—vanadium dioxide—and tells us more about the fundamental materials science of phase transitions.” (more…)

Read More