Tag Archives: metal

Recycling the Rare Earth Metals of E-Waste

Recycling the valuable rare earth metals found in advanced electronics from smartphones to plasma screen TVs has been a challenge for both manufacturers and environmental groups. Yale researchers, though, have developed a technology that could recover these materials for reuse. (more…)

Read More

Metal Made Like Plastic May Have Big Impact

Open a door and watch what happens — the hinge allows it to open and close, but doesn’t permanently bend. This simple concept of mechanical motion is vital for making all kinds of movable structures, including mirrors and antennas on spacecraft. Material scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, are working on new, innovative methods of creating materials that can be used for motion-based mechanisms. (more…)

Read More

Mathematics of Popping Bubbles in a Foam

Bubble baths and soapy dishwater, the refreshing head on a beer and the luscious froth on a cappuccino. All are foams, beautiful yet ephemeral as the bubbles pop one by one. Now, two researchers from the Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley have described mathematically the successive stages in the complex evolution and disappearance of foamy bubbles, a feat that could help in modeling industrial processes in which liquids mix or in the formation of solid foams such as those used to cushion bicycle helmets. (more…)

Read More

Molecular Scientists Reveal Extraordinary Properties of Ordinary Glasses

Technologically valuable ultrastable glasses can be produced in days or hours with properties corresponding to those that have been aged for thousands of years, computational and laboratory studies have confirmed.

Aging makes for higher quality glassy materials because they have slowly evolved toward a more stable molecular condition. This evolution can take thousands or millions of years, but manufacturers must work faster. Armed with a better understanding of how glasses age and evolve, researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process. (more…)

Read More

Flexing Fingers for Micro-Robotics: Berkeley Lab Scientists Create a Powerful, Microscale Actuator

Berkeley, Calif., Dec. 2012 — Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger. Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

“We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells,” says Berkeley Lab and UC Berkeley scientist Junqiao Wu. “What’s more, it uses this very interesting material—vanadium dioxide—and tells us more about the fundamental materials science of phase transitions.” (more…)

Read More

Nanocrystals Not Small Enough to Avoid Defects

Berkeley Lab Scientists at Advanced Light Source Show Dislocations Can Be Induced by Pressure in Ultrafine Nanocrystals

Nanocrystals as protective coatings for advanced gas turbine and jet engines are receiving a lot of attention for their many advantageous mechanical properties, including their resistance to stress. However, contrary to computer simulations, the tiny size of nanocrystals apparently does not safeguard them from defects.

In a study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab)and collaborators from multiple institutions, nanocrystals of nickel subjected to high pressure continued to suffer dislocation-mediated plastic deformation even when the crystals were only three nanometers in size. These experimental findings, which were carried out at Berkeley Lab’s Advanced Light Source (ALS), a premier source of X-rays and ultraviolet light for scientific research, show that dislocations can form in the finest of nanocrystals when stress is applied. (more…)

Read More

State-of-the-Art Beams from Table-Top Accelerators

Berkeley Lab’s lead in laser plasma acceleration research continues with new benchmarks for electron beam quality

Part One: Focusing in on beam focus

The rapidly evolving technology of laser plasma accelerators (LPAs) – called “table-top accelerators” because their length can be measured in centimeters instead of kilometers – promises a new breed of machines, far less expensive and with far less impact on the land and the environment than today’s conventional accelerators.

Future LPAs offer not only compact high-energy colliders for fundamental physics but diminutive light sources as well. These will probe chemical reactions, from artificial photosynthesis to “green catalysis”; unique biological structures, inaccessible to other forms of microscopy yet essential to understanding life and health; and new materials, including low-temperature superconductors, topological insulators, spintronics devices, and graphene nanostructures, which will revolutionize the electronics industry. With intensely bright beams spanning the spectrum from microwaves to gamma rays, table-top accelerators will open new vistas of science. (more…)

Read More

Super-Strong, High-Tech Material Found to be Toxic to Aquatic Animals by Researchers at MU and USGS

Carbon nanotubes hold promise for industry but need monitoring, say researchers

COLUMBIA, Mo. — Carbon nanotubes (CNTs) are some of the strongest materials on Earth and are used to strengthen composite materials, such as those used in high-performance tennis rackets. CNTs have potential uses in everything from medicine to electronics to construction. However, CNTs are not without risks. A joint study by the University of Missouri and United States Geological Survey found that they can be toxic to aquatic animals. The researchers urge that care be taken to prevent the release of CNTs into the environment as the materials enter mass production.

“The great promise of carbon nanotubes must be balanced with caution and preparation,” said Baolin Deng, professor and chair of chemical engineering at the University of Missouri. “We don’t know enough about their effects on the environment and human health. The EPA and other regulatory groups need more studies like ours to provide information on the safety of CNTs.” (more…)

Read More