Tag Archives: als

UA Researchers Pinpoint Pathway to Muscle Paralysis

Researchers have discovered a key player in the molecular process that causes the communication breakdown between nerves in fatal muscle degeneration disease.

Researchers at the University of Arizona have taken an essential step forward in the quest to find the cause of amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease. In the cells of flies, mice and humans with ALS, scientists at the UA have pinpointed a process that collapses when a critical protein’s blueprint is arrested on its way to protein construction. The study was published recently in the journal Cell Reports. (more…)

Read More

Mysteries of Space Dust Revealed

Berkeley Lab researchers help give a first look at suspected extra-solar particles.

The first analysis of space dust collected by a special collector onboard NASA’s Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks, which likely originated from beyond our solar system, are more complex in composition and structure than previously imagined. (more…)

Read More

How a Silly Putty ingredient could advance stem cell therapies

ANN ARBOR — The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13. (more…)

Read More

Natural 3D Counterpart to Graphene Discovered

Researchers at Berkeley Lab’s Advanced Light Source Find New Form of Quantum Matter

The discovery of what is essentially a 3D version of graphene – the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon – promises exciting new things to come for the high-tech industry, including much faster transistors and far more compact hard drives. A collaboration of researchers at the U.S Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered that sodium bismuthide can exist as a form of quantum matter called a three-dimensional topological Dirac semi-metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions in the interior or bulk of a material, a novel state that was only recently proposed by theorists. (more…)

Read More

An Inside Look at a MOF in Action

Berkeley Lab Researchers Probe Into Electronic Structure of MOF May Lead to Improved Capturing of Greenhouse Gases

A unique inside look at the electronic structure of a highly touted metal-organic framework (MOF) as it is adsorbing carbon dioxide gas should help in the design of new and improved MOFs for carbon capture and storage. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have recorded the first in situ electronic structure observations of the adsorption of carbon dioxide inside Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising strategies for capturing and storing greenhouse gases. (more…)

Read More

Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions

Berkeley Lab scientists and their colleagues have discovered the properties that made ancient Roman concrete sustainable and durable

The chemical secrets of a concrete Roman breakwater that has spent the last 2,000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers led by Paulo Monteiro of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), a professor of civil and environmental engineering at the University of California, Berkeley.

Analysis of samples provided by team member Marie Jackson pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its manufacture was less environmentally damaging – and how these improvements could be adopted in the modern world. (more…)

Read More

Whirlpools on the Nanoscale Could Multiply Magnetic Memory

At the Advanced Light Source, Berkeley Lab scientists join an international team to control spin orientation in magnetic nanodisks

“We spent 15 percent of home energy on gadgets in 2009, and we’re buying more gadgets all the time,” says Peter Fischer of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). Fischer lets you know right away that while it’s scientific curiosity that inspires his research at the Lab’s Advanced Light Source (ALS), he intends it to help solve pressing problems.

“What we’re working on now could make these gadgets perform hundreds of times better and also be a hundred times more energy efficient,” says Fischer, a staff scientist in the Materials Sciences Division. As a principal investigator at the Center for X-Ray Optics, he leads ALS beamline 6.1.2, where he specializes in studies of magnetism. (more…)

Read More

Surprising Control over Photoelectrons from a Topological Insulator

Berkeley Lab scientists discover how a photon beam can flip the spin polarization of electrons emitted from an exciting new material

Plain-looking but inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. Even at room temperature, a single chunk of TI is a good insulator in the bulk, yet behaves like a metal on its surface.

Researchers find TIs exciting partly because the electrons that flow swiftly across their surfaces are “spin polarized”: the electron’s spin is locked to its momentum, perpendicular to the direction of travel. These interesting electronic states promise many uses – some exotic, like observing never-before-seen fundamental particles, but many practical, including building more versatile and efficient high-tech gadgets, or, further into the future, platforms for quantum computing. (more…)

Read More