Tag Archives: amyotrophic lateral sclerosis

People with ALS May Benefit From More Glucose

A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.

Increased glucose, transformed into energy, could give people with amyotrophic lateral sclerosis, or ALS, improved mobility and a longer life, according to new findings by a University of Arizona-led research team. (more…)

Read More

UA Researchers Pinpoint Pathway to Muscle Paralysis

Researchers have discovered a key player in the molecular process that causes the communication breakdown between nerves in fatal muscle degeneration disease.

Researchers at the University of Arizona have taken an essential step forward in the quest to find the cause of amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease. In the cells of flies, mice and humans with ALS, scientists at the UA have pinpointed a process that collapses when a critical protein’s blueprint is arrested on its way to protein construction. The study was published recently in the journal Cell Reports. (more…)

Read More

How a Silly Putty ingredient could advance stem cell therapies

ANN ARBOR — The sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13. (more…)

Read More

A new approach to spinal muscular atrophy?

Spinal muscular atrophy is a debilitating neuromuscular disease that in its most severe form is the leading genetic cause of infant death. By experimenting with an ALS drug in two very different animal models, researchers at Brown University and Boston Children’s Hospital have identified a new potential mechanism for developing an SMA treatment.

PROVIDENCE, R.I. [Brown University] — There is no specific drug to treat spinal muscular atrophy (SMA), a family of motor neuron diseases that in its most severe form is the leading genetic cause of infant death in the United States and affects one in 6,000 people overall. But a new multispecies study involving a drug that treats amyotrophic lateral sclerosis (ALS) has pinpointed a mechanism of SMA that drug developers might be able to exploit for a new therapy. (more…)

Read More

Scientists Measure Communication between Stem Cell-Derived Motor Neurons, Muscle Cells

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure communication between stem cell–derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside the body using these neurons and cells and that the level of communication, or synaptic activity, between them can be accurately measured by stimulating the motor neurons with an electrode and then tracking the transfer of electrical activity into the muscle cells to which the neurons are connected. (more…)

Read More

MU Researchers Find New Insight into Fatal Spinal Disease

*Discovery could lead to treatments for muscular dystrophy and ALS*

COLUMBIA, Mo. – Researchers at the University of Missouri have identified a communication breakdown between nerves and muscles in mice that may provide new insight into the debilitating and fatal human disease known as spinal muscular atrophy (SMA).

“Critical communication occurs at the point where nerves and muscles ‘talk’ to each other. When this communication between nerves and muscles is disrupted, muscles do not work properly,” said Michael Garcia, associate professor of biological sciences in the College of Arts and Science and the Christopher S. Bond Life Sciences Center.  “In this study, we found that delivery of ‘the words’ a nerve uses to communicate with muscles was disrupted before they arrived at the nerve ending.” (more…)

Read More