Tag Archives: nanoscale

Jumping Nanoparticles

Experiments with levitated nanoparticles reveal role of friction at the nanoscale

Transitions occurring in nanoscale systems, such as a chemical reaction or the folding of a protein, are strongly affected by friction and thermal noise. Almost 80 years ago, the Dutch physicist Hendrik Kramers predicted that such transitions occur most frequently at intermediate friction, an effect known as Kramers turnover. (more…)

Read More

UA Engineer Predicts Materials Failure From the Tiniest of Grains

Researcher Katerina Aifantis is probing mechanical processes at the nanoscale with a grant from the U.S. Department of Energy.

Katerina Aifantis, whose father was teaching her about negative numbers when she was 3 years old, started college at 16, earned a bachelor’s degree in engineering at 19 and a master’s degree in materials engineering at 20. (more…)

Read More

First-ever videos show how heat moves through materials at the nanoscale and speed of sound

Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy

Using a state-of-the-art ultrafast electron microscope, University of Minnesota researchers have recorded the first-ever videos showing how heat moves through materials at the nanoscale traveling at the speed of sound. (more…)

Read More

Crystalline Mirror Solutions: Erfolgreiches Startup der Universität Wien

Die Crystalline Mirror Solutions GmbH (CMS) ist aus der experimentellen Grundlagenforschung von Markus Aspelmeyer und Garrett Cole an der Fakultät für Physik der Universität Wien hervorgegangen. Heute ist CMS ein weltweit führender Hersteller von Hochpräzisionsoptik für Lasersysteme und wurde bereits mehrfach ausgezeichnet, zuletzt mit dem 1. Platz in der Kategorie High-Tech beim GEWINN-Jungunternehmerwettbewerb. Ein Beweis dafür, dass Grundlagenforschung eine wichtige Basis für wirtschaftliche Innovationen ist.

Crystalline Mirror Solutions ist ein Pionierunternehmen auf dem Gebiet der laserbasierten Präzisionsmessung. “Unsere Technologie erlaubt erstmals den Einsatz kristalliner Halbleiterspiegel für die konventionelle Laseroptik. Die Spiegel – man spricht von einem sogenannten Bragg-Mirror – bestehen aus einem sehr dünnen, kristallinen Film mit einer genau definierten Abfolge von Halbleiterschichten. Dieser Halbleiterfilm wird direkt mit einem optischen Träger verbunden”, so Markus Aspelmeyer, Professor für Quantum Information on the Nanoscale an der Universität Wien. (more…)

Read More

Engineering defects in diamond for quantum computing and subatomic imaging

By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. They describe their technique in a paper published in the journal Applied Physics Letters, from AIP Publishing. (more…)

Read More

Diamond Imperfections Pave the Way to Technology Gold

Berkeley Study Provides Unprecedented Details on Ultrafast Processes in Diamond Nitrogen Vacancy Centers

From supersensitive detections of magnetic fields to quantum information processing, the key to a number of highly promising advanced technologies may lie in one of the most common defects in diamonds. Researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have taken an important step towards unlocking this key with the first ever detailed look at critical ultrafast processes in these diamond defects. (more…)

Read More

Whirlpools on the Nanoscale Could Multiply Magnetic Memory

At the Advanced Light Source, Berkeley Lab scientists join an international team to control spin orientation in magnetic nanodisks

“We spent 15 percent of home energy on gadgets in 2009, and we’re buying more gadgets all the time,” says Peter Fischer of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). Fischer lets you know right away that while it’s scientific curiosity that inspires his research at the Lab’s Advanced Light Source (ALS), he intends it to help solve pressing problems.

“What we’re working on now could make these gadgets perform hundreds of times better and also be a hundred times more energy efficient,” says Fischer, a staff scientist in the Materials Sciences Division. As a principal investigator at the Center for X-Ray Optics, he leads ALS beamline 6.1.2, where he specializes in studies of magnetism. (more…)

Read More