Tag Archives: nitrogen vacancy

Diamonds’ flaws hold promise for new technologies

Despite their charm and allure, diamonds are rarely perfect. They have tiny defects that, to assistant professor Nathalie de Leon, make them ever so appealing. These atom-sized mistakes have enormous potential in technologies for high-resolution imaging and secure communication lines. (more…)

Read More

New Technique for Creating NV-Doped Nanodiamonds May Be Boost for Quantum Computing

Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies. These doped nanodiamonds also hold promise for use in single-photon sensors and nontoxic, fluorescent biomarkers. (more…)

Read More

Diamond Imperfections Pave the Way to Technology Gold

Berkeley Study Provides Unprecedented Details on Ultrafast Processes in Diamond Nitrogen Vacancy Centers

From supersensitive detections of magnetic fields to quantum information processing, the key to a number of highly promising advanced technologies may lie in one of the most common defects in diamonds. Researchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have taken an important step towards unlocking this key with the first ever detailed look at critical ultrafast processes in these diamond defects. (more…)

Read More

Flawed Diamonds Promise Sensory Perfection

Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

From brain to heart to stomach, the bodies of humans and animals generate weak magnetic fields that a supersensitive detector could use to pinpoint illnesses, trace drugs – and maybe even read minds. Sensors no bigger than a thumbnail could map gas deposits underground, analyze chemicals, and pinpoint explosives that hide from other probes.

Now scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, working with colleagues from Harvard University, have improved the performance of one of the most potent possible sensors of magnetic fields on the nanoscale – a diamond defect no bigger than a pair of atoms, called a nitrogen vacancy (NV) center. (more…)

Read More