Tag Archives: jay narayan

New Technique for Creating NV-Doped Nanodiamonds May Be Boost for Quantum Computing

Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies. These doped nanodiamonds also hold promise for use in single-photon sensors and nontoxic, fluorescent biomarkers. (more…)

Read More

Researchers Integrate Single-Crystal BFO onto a Silicon Chip, Open Door to Smart Devices

Researchers from North Carolina State University have for the first time integrated a material called bismuth ferrite (BFO) as a single crystal onto a silicon chip, opening the door to a new generation of multifunctional, smart devices.

BFO has both ferromagnetic and ferroelectric properties, meaning that it can be magnetized by running an electric current through the material. Potential applications for BFO include new magnetic memory devices, smart sensors and spintronics technologies. (more…)

Read More

New Technique Controls Crystalline Structure of Titanium Dioxide

Researchers from North Carolina State University have developed a new technique for controlling the crystalline structure of titanium dioxide at room temperature. The development should make titanium dioxide more efficient in a range of applications, including photovoltaic cells, hydrogen production, antimicrobial coatings, smart sensors and optical communication technologies.

Titanium dioxide most commonly comes in one on of two major “phases,” meaning that its atoms arrange themselves in one of two crystalline structures. These phases are “anatase” or “rutile.” The arrangement of atoms dictates the material’s optical, chemical and electronic properties. As a result, each phase has different characteristics. The anatase phase has characteristics that make it better suited for use as an antibacterial agent and for applications such as hydrogen production. The rutile phase is better suited for use in other applications, such as photovoltaic cells, smart sensors and optical communication technologies. (more…)

Read More