Tag Archives: nanoscale

Improving Batteries

UD doctoral student studies ways to improve lithium battery performance

Lithium batteries are used in many devices such as cell phones, computers and cameras, among others.

University of Delaware doctoral student Wei-Fan Kuan is investigating ways to improve membranes used in lithium batteries by capitalizing on the innate properties of block copolymers.

It is work that he believes will become increasingly important as the components in electronic devices continue to get smaller. (more…)

Read More

Researchers Develop New, Less Expensive Nanolithography Technique

Researchers from North Carolina State University have developed a new nanolithography technique that is less expensive than other approaches and can be used to create technologies with biomedical applications.

“Among other things, this type of lithography can be used to manufacture chips for use in biological sensors that can identify target molecules, such as proteins or genetic material associated with specific medical conditions,” says Dr. Albena Ivanisevic, co-author of a paper describing the research. Ivanisevic is an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and the University of North Carolina at Chapel Hill. Nanolithography is a way of printing patterns at the nanoscale. (more…)

Read More

Going Big

UD researchers report progress in development of carbon nanotube-based continuous fibers

The Chou research group in the University of Delaware’s College of Engineering recently reported on advances in carbon nanotube-based continuous fibers with invited articles in Advanced Materials and Materials Today, two high impact scientific journals.

According to Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, who co-authored the articles with colleagues Weibang Lu and Amanda Wu, there has been a concerted scientific effort over the last decade to “go big” – to translate the superb physical and mechanical properties of nanoscale carbon nanotubes to the macroscale. (more…)

Read More

Berkeley Lab Scientists Generate Electricity From Viruses

New approach is a promising first step toward the development of tiny devices that harvest electrical energy from everyday tasks

Imagine charging your phone as you walk, thanks to a paper-thin generator embedded in the sole of your shoe. This futuristic scenario is now a little closer to reality. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to generate power using harmless viruses that convert mechanical energy into electricity.

The scientists tested their approach by creating a generator that produces enough current to operate a small liquid-crystal display. It works by tapping a finger on a postage stamp-sized electrode coated with specially engineered viruses. The viruses convert the force of the tap into an electric charge. (more…)

Read More

The Weird World of “Remote Heating”

*UMD Researchers Discover Nanoscale Phenomena with Potential for Computer Speed Advances*

College Park, Md.– A team of University of Maryland scientists have discovered that when electric current is run through carbon nanotubes, objects nearby heat up while the nanotubes themselves stay cool, like a toaster that burns bread without getting hot. Understanding this completely unexpected new phenomenon could lead to new ways of building computer processors that can run at higher speeds without overheating.

“This is a new phenomenon we’re observing, exclusively at the nanoscale, and it is completely contrary to our intuition and knowledge of Joule heating at larger scales-for example, in things like your toaster,” says first author Kamal Baloch, who conducted the research while a graduate student at the University of Maryland. “The nanotube’s electrons are bouncing off of something, but not its atoms. Somehow, the atoms of the neighboring materials-the silicon nitride substrate-are vibrating and getting hot instead.” (more…)

Read More

‘Bed-of-Nails’ Breast Implant Deters Cancer Cells

Researchers at Brown University have created an implant that appears to deter breast cancer cell regrowth. Made from a common federally approved polymer, the implant is the first to be modified at the nanoscale in a way that causes a reduction in the blood-vessel architecture that breast cancer tumors depend upon, while also attracting healthy breast cells. Results are published in Nanotechnology.

PROVIDENCE, R.I. [Brown University] — One in eight women in the United States will develop breast cancer. Of those, many will undergo surgery to remove the tumor and will require some kind of breast reconstruction afterward, often involving implants. Cancer is an elusive target, though, and malignant cells return for as many as one-fifth of women originally diagnosed, according to the American Cancer Society. (more…)

Read More

Diamonds and Dust for Better Cement

Structural studies at Berkeley Lab’s Advanced Light Source could point to reduced carbon emissions and stronger cements

It’s no surprise that humans the world over use more water, by volume, than any other material. But in second place, at over 17 billion tons consumed each year, comes concrete made with Portland cement. Portland cement provides the essential binder for strong, versatile concrete; its basic materials are found in many places around the globe; and, at about $100 a ton, it’s relatively cheap. Making it, however, releases massive amounts of carbon dioxide, accounting for more than five percent of the total CO2 emissions from human activity.

“Portland cement is the most important building material in the world,” says Paulo Monteiro, a professor of civil and environmental engineering at the University of California at Berkeley, “but if we are going to find ways to use it more efficiently – or just as important, search for practical alternatives – we need a full understanding of its structure on the nanoscale.” To this end Monteiro has teamed with researchers at the U.S. Department of Energy’s Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. (more…)

Read More

The Brittleness of Aging Bones – More than a Loss of Bone Mass

*Berkeley Lab Researchers Show How Loss of Bone Quality Also a Major Factor*

It is a well-established fact that as we grow older our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. (more…)

Read More