Tag Archives: stiffness

Computer Simulation of Blood Vessel Growth

Early Step toward Treatment for Diseases that Affect Blood Flow

University of Utah bioengineers showed that tiny blood vessels grow better in the laboratory if the tissue surrounding them is less dense. Then the researchers created a computer simulation to predict such growth accurately – an early step toward treatments to provide blood supply to tissues damaged by diabetes and heart attacks and to skin grafts and implanted ligaments and tendons.

“Better understanding of the processes that regulate the growth of blood vessels puts us in a position ultimately to develop new treatments for diseases related to blood vessel growth,” and to better understand cancer metastasis, says bioengineering professor Jeff Weiss of the university’s Scientific Computing and Imaging Institute. (more…)

Read More

Physical Properties Predict Stem Cell Outcome

Tissue engineers can use mesenchymal stem cells derived from fat to make cartilage, bone, or more fat. The best cells to use are ones that are already likely to become the desired tissue. Brown University researchers have discovered that the mechanical properties of the stem cells can foretell what they will become, leading to a potential method of concentrating them for use in healing.

PROVIDENCE, R.I. [Brown University] — To become better healers, tissue engineers need a timely and reliable way to obtain enough raw materials: cells that either already are or can become the tissue they need to build. In a new study, Brown University biomedical engineers show that the stiffness, viscosity, and other mechanical properties of adult stem cells derived from fat, such as liposuction waste, can predict whether they will turn into bone, cartilage, or fat.

That insight could lead to a filter capable of extracting the needed cells from a larger and more diverse tissue sample, said Eric Darling, senior author of the paper published in Proceedings of the National Academy of Sciences. Imagine a surgeon using such a filter to first extract fat from a patient with a bone injury and then to inject a high concentration of bone-making stem cells into the wound site during the same operation. (more…)

Read More

Diamonds and Dust for Better Cement

Structural studies at Berkeley Lab’s Advanced Light Source could point to reduced carbon emissions and stronger cements

It’s no surprise that humans the world over use more water, by volume, than any other material. But in second place, at over 17 billion tons consumed each year, comes concrete made with Portland cement. Portland cement provides the essential binder for strong, versatile concrete; its basic materials are found in many places around the globe; and, at about $100 a ton, it’s relatively cheap. Making it, however, releases massive amounts of carbon dioxide, accounting for more than five percent of the total CO2 emissions from human activity.

“Portland cement is the most important building material in the world,” says Paulo Monteiro, a professor of civil and environmental engineering at the University of California at Berkeley, “but if we are going to find ways to use it more efficiently – or just as important, search for practical alternatives – we need a full understanding of its structure on the nanoscale.” To this end Monteiro has teamed with researchers at the U.S. Department of Energy’s Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. (more…)

Read More