Tag Archives: magnetism

A new way to get electricity from magnetism

‘Inverse spin Hall effect’ works in several organic semiconductors

By showing that a phenomenon dubbed the “inverse spin Hall effect” works in several organic semiconductors – including carbon-60 buckyballs – University of Utah physicists changed magnetic “spin current” into electric current. The efficiency of this new power conversion method isn’t yet known, but it might find use in future electronic devices including batteries, solar cells and computers. (more…)

Read More

New Phenomenon in Nanodisk Magnetic Vortices

Berkeley Lab Researchers Take a Mesocale Look at Magnetic Vortex Formations

The phenomenon in ferromagnetic nanodisks of magnetic vortices – hurricanes of magnetism only a few atoms across – has generated intense interest in the high-tech community because of the potential application of these vortices in non-volatile Random Access Memory (RAM) data storage systems. New findings from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) indicate that the road to magnetic vortex RAM might be more difficult to navigate than previously supposed, but there might be unexpected rewards as well.

In an experiment made possible by the unique X-ray beams at Berkeley Lab’s Advanced Light Source (ALS), a team of researchers led by Peter Fischer and Mi-Young Im of the Center for X-Ray Optics (CXRO), in collaboration with scientists in Japan, discovered that contrary to what was previously believed, the formation of magnetic vortices in ferromagnetic nanodisks is an asymmetric phenomenon. It is possible that this breaking of symmetry would lead to failure in a data storage device during its initialization process. (more…)

Read More

As Next Supercontinent Forms, Arctic Ocean, Caribbean will Vanish First

Geologists at Yale University have proposed a new theory to describe the formation of supercontinents, the epic process by which Earth’s major continental blocks combine into a single vast landmass. The new model radically challenges the dominant theories of how supercontinents might take shape.

In a paper published Feb. 9 in the journal Nature, Yale researchers introduce a process called orthoversion, in which each succeeding supercontinent forms 90 degrees from the geographic center of its ancient predecessor. Under the theory, the present-day Arctic Ocean and Caribbean Sea will vanish as North and South America fuse during a mutual northward migration that leads to a collision with Europe and Asia. (more…)

Read More

IBM Research Determines Atomic Limits of Magnetic Memory

*IBM scientists create the world’s smallest magnetic memory bit using only 12 atoms.*

*First-ever demonstration of engineered atomic-scale structures storing information magnetically at low temperatures.*

*New experimental atomic-scale magnet memory is at least 100 times denser than today’s hard disk drives and solid state memory chips.*

SAN JOSE, Calif. – 12 Jan 2012: Punctuating 30 years of nanotechnology research, scientists from IBM Research have successfully demonstrated the ability to store information in as few as 12 magnetic atoms. This is significantly less than today’s disk drives, which use about one million atoms to store a single bit of information. The ability to manipulate matter by its most basic components – atom by atom – could lead to the vital understanding necessary to build smaller, faster and more energy-efficient devices.

While silicon transistor technology has become cheaper, denser and more efficient, fundamental physical limitations suggest this path of conventional scaling is unsustainable. Alternative approaches are needed to continue the rapid pace of computing innovation. (more…)

Read More

Enhancing the Magnetism: Berkeley Researchers Find Enhanced and Controllable Magnetization in Unique Bismuth Ferrite Films

“The nation that controls magnetism will control the universe,” famed fictional detective Dick Tracy predicted back in 1935. Probably an overstatement, but there’s little doubt the nation that leads the development of advanced magnetoelectronic or “spintronic” devices is going to have a serious leg-up on its Information Age competition. A smaller, faster and cheaper way to store and transfer information is the spintronic grand prize and a key to winning this prize is understanding and controlling a  multiferroic property known as “spontaneous magnetization.”

Now, researchers with the U.S. Department of Energy (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to enhance spontaneous magnetization in special versions of the popular multiferroic material bismuth ferrite. What’s more, they can turn this magnetization “on/off” through the application of an external electric field, a critical ability for the advancement of spintronic technology. (more…)

Read More