Tag Archives: molecular level

Tenfold boost in ability to pinpoint proteins in cancer cells

Better diagnosis and treatment of cancer could hinge on the ability to better understand a single cell at its molecular level. New research offers a more comprehensive way of analyzing one cell’s unique behavior, using an array of colors to show patterns that could indicate why a cell will or won’t become cancerous.

A University of Washington team has developed a new method for color-coding cells that allows them to illuminate 100 biomarkers, a ten-time increase from the current research standard, to help analyze individual cells from cultures or tissue biopsies. The work is published this week (March 19) in Nature Communications. (more…)

Read More

Researchers Create Self-Healing, Stretchable Wires Using Liquid Metal

Researchers from North Carolina State University have developed elastic, self-healing wires in which both the liquid-metal core and the polymer sheath reconnect at the molecular level after being severed.

“Because we’re using liquid metal, these wires have excellent conductive properties,” says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper on the work. “And because the wires are also elastic and self-healing, they have a lot of potential for use in technologies that could be exposed to high-stress environments.” (more…)

Read More

Better Way to Understand Plasmid Cloning from AddGene

Medical research has been studying molecular cloning for centuries. While many remember the Scottish lambs as the first successful cloning, there have been countless medical advances since then. Many of them are not as evident or dramatic as Molly the sheep, they have been blazing the trail for cloning vital organs, DNA strands and chromosomes in hopes of curtailing or even curing the maladies that plague the human race. Plasmids are at the forefront of this research in hopes they can learn how to insert DNA strands and restructure diseases or ailments on a molecular level.

It is difficult to describe what Plasmid is exactly. Plasmid is a biologically engineered DNA strands that are meant to be used in existing organisms as well as creating new ones. There are many aspects of it used in different ways from molecule cloning, manipulating genes or advancing medical research. Plasmids are circular fragments of double-stranded DNA. Plasmids are used in DNA strands and they can be replicated independently of original chromosomal DNA that created them. While they are mainly used for studying purposes at the moment in biological laboratories, they are meant to advance medical research and hopefully be used to prolong human life. (more…)

Read More

The Next Big Step Toward Atom-Specific Dynamical Chemistry

*Berkeley Lab scientists push chemistry to the edge, testing plans for a new generation of light sources*

For Ali Belkacem of Berkeley Lab’s Chemical Sciences Division, “What is chemistry?” is not a rhetorical question.

“Chemistry is inherently dynamical,” he answers. “That means, to make inroads in understanding – and ultimately control – we have to understand how atoms combine to form molecules; how electrons and nuclei couple; how molecules interact, react, and transform; how electrical charges flow; and how different forms of energy move within a molecule or across molecular boundaries.” The list ends with a final and most important question: “How do all these things behave in a correlated way, ‘dynamically’ in time and space, both at the electron and atomic levels?” (more…)

Read More

The Brittleness of Aging Bones – More than a Loss of Bone Mass

*Berkeley Lab Researchers Show How Loss of Bone Quality Also a Major Factor*

It is a well-established fact that as we grow older our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. (more…)

Read More

Depression Linked to Altered Activity of Circadian Rhythm Gene

COLUMBUS, Ohio – Depression appears to be associated with a molecular-level disturbance in the body’s 24-hour clock, new research suggests. 

Scientists examined genes that regulate circadian rhythm in people with and without a history of depression. As a group, those with a history of depression had a higher level of activity of the so-called Clock gene, which has a role in regulating circadian rhythm, than did people with no mood disorders.

Higher expression levels of this gene suggest something is amiss in the body’s 24-hour biological and behavioral cycle, which could affect sleep patterns and other physiological functions governed by circadian rhythm. Sleep disturbance is a common symptom of depression.  (more…)

Read More