Tag Archives: nanocrystals

Unexpected Water Explains Surface Chemistry of Nanocrystals

Berkeley Lab Scientists Answer Questions of How Charged Ligands Balance on Surface of Colloidal Nanoparticles

Danylo Zherebetskyy and his colleagues at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) found unexpected traces of water in semiconducting nanocrystals. (more…)

Read More

Bright Future for Protein Nanoprobes

Berkeley Lab Researchers Discover New Rules for Single-Particle Imaging with Light-Emitting Nanocrystals

The term a “brighter future” might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered surprising new rules for creating ultra-bright light-emitting crystals that are less than 10 nanometers in diameter. These ultra-tiny but ultra-bright nanoprobes should be a big asset for biological imaging, especially deep-tissue optical imaging of neurons in the brain.

Working at the Molecular Foundry, a DOE national nanoscience center hosted at Berkeley Lab, a multidisciplinary team of researchers led by James Schuck and Bruce Cohen, both with Berkeley Lab’s Materials Sciences Division, used advanced single-particle characterization and theoretical modeling to study what are known as “upconverting nanoparticles” or UCNPs. Upconversion is the process by which a molecule absorbs two or more photons at a lower energy and emits them at higher energies. The research team determined that the rules governing the design of UCNP probes for ensembles of molecules do not apply to UCNP probes designed for single-molecules. (more…)

Read More

New Opportunities for Crystal Growth

Berkeley Lab Facility Provides Unique Capabilities for the Synthesis of New Crystals and Materials

Talk with material scientist Edith Bourret-Courchesne about what it takes to grow and develop useful crystals and a word you will hear repeated often is “patience.” As the leader of a unique crystal growth facility at Lawrence Berkeley National Laboratory (Berkeley Lab) dedicated to the synthesis of crystals and new materials, patience is more than a virtue, it’s a necessity.

“The growth of every crystal is unique, like the formation of a snowflake, and since we work with compounds that have never before been crystallized the processes by which we grow our crystals are also unique,” she says. “As a result, a lot of our research is aimed at understanding why something didn’t work.” (more…)

Read More

Next Scientific Fashion Could be Designer Nanocrystals

Three University of Chicago chemistry professors hope that their separate research trajectories will converge to create a new way of assembling what they call “designer atoms” into materials with a broad array of potentially useful properties and functions.

These “designer atoms” would be nanocrystals—crystalline arrays of atoms intended to be manipulated in ways that go beyond standard uses of atoms in the periodic table. Such arrays would be suited to address challenges in solar energy, quantum computing and functional materials. (more…)

Read More

The Brittleness of Aging Bones – More than a Loss of Bone Mass

*Berkeley Lab Researchers Show How Loss of Bone Quality Also a Major Factor*

It is a well-established fact that as we grow older our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. (more…)

Read More