Tag Archives: nonlinear

Berkeley Lab Researchers Create a Nonlinear Light-generating Zero-Index MetaMaterial

Holds Promise for Future Quantum Networks and Light Sources

The Information Age will get a major upgrade with the arrival of quantum processors many times faster and more powerful than today’s supercomputers. For the benefits of this new Information Age 2.0 to be fully realized, however, quantum computers will need fast and efficient multi-directional light sources. While quantum technologies remain grist for science fiction, a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have taken an important step towards efficient light generation, the foundation for future quantum networks. (more…)

Read More

CU Mathematicians Show How Shallow Waves May Help Explain Tsunami Power

While wave watching is a favorite pastime of beachgoers, few notice what is happening in the shallowest water. A closer look by two University of Colorado Boulder applied mathematicians has led to the discovery of interacting X- and Y-shaped ocean waves that may help explain why some tsunamis are able to wreak so much havoc.

Professor Mark Ablowitz and doctoral student Douglas Baldwin repeatedly observed such wave interactions in ankle-deep water at both Nuevo Vallarta, Mexico, and Venice Beach, Calif., in the Pacific Ocean — interactions that were thought to be very rare but which actually happen every day near low tide. There they saw single, straight waves interacting with each other to form X- and Y-shaped waves as well as more complex wave structures, all predicted by mathematical equations, said Ablowitz. (more…)

Read More

The Next Big Step Toward Atom-Specific Dynamical Chemistry

*Berkeley Lab scientists push chemistry to the edge, testing plans for a new generation of light sources*

For Ali Belkacem of Berkeley Lab’s Chemical Sciences Division, “What is chemistry?” is not a rhetorical question.

“Chemistry is inherently dynamical,” he answers. “That means, to make inroads in understanding – and ultimately control – we have to understand how atoms combine to form molecules; how electrons and nuclei couple; how molecules interact, react, and transform; how electrical charges flow; and how different forms of energy move within a molecule or across molecular boundaries.” The list ends with a final and most important question: “How do all these things behave in a correlated way, ‘dynamically’ in time and space, both at the electron and atomic levels?” (more…)

Read More