Tag Archives: chemical composition

A better way to learn if alien planets have the right stuff

A new method for analyzing the chemical composition of stars may help scientists winnow the search for Earth 2.0.

Yale University researchers Debra Fischer and John Michael Brewer, in a new study that will appear in the Astrophysical Journal, describe a computational modeling technique that gives a clearer sense of the chemistry of stars, revealing the conditions present when their planets formed. The system creates a new way to assess the habitability and biological evolution possibilities of planets outside our solar system. (more…)

Read More

Berkeley Lab Researchers Create a Nonlinear Light-generating Zero-Index MetaMaterial

Holds Promise for Future Quantum Networks and Light Sources

The Information Age will get a major upgrade with the arrival of quantum processors many times faster and more powerful than today’s supercomputers. For the benefits of this new Information Age 2.0 to be fully realized, however, quantum computers will need fast and efficient multi-directional light sources. While quantum technologies remain grist for science fiction, a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have taken an important step towards efficient light generation, the foundation for future quantum networks. (more…)

Read More

Scientists Helped Design NASA Mission Concept to Search for Life on Europa

AUSTIN, Texas — Scientists at the University of Texas at Austin’s Institute for Geophysics helped develop a blueprint for a possible future NASA lander mission to Europa, an icy moon of Jupiter that has a global ocean covered by an ice shell. Europa’s large reservoir of liquid water has long enchanted planetary scientists with the possibility of harboring life. Many experts believe it to be the most likely place in our solar system besides Earth to host life today. The proposed mission is designed to assess the moon’s habitability by studying its surface composition, ice shell, ocean and geology.

Don Blankenship, senior research scientist at the institute, is part of the science definition team commissioned by NASA to draft the report, which appears in the August 2013 issue of Astrobiology. Blankenship and two colleagues — Krista Soderlund, postdoctoral fellow at the institute; and Britney Schmidt, formerly a postdoctoral fellow at the institute, now assistant professor at the Georgia Institute of Technology — developed a part of the mission scenario that would use sound waves to study the moon’s icy shell, deep ocean and possible shallow lakes. (more…)

Read More

NASA Mars Rover Preparing to Drill into First Martian Rock

PASADENA, Calif. — NASA’s Mars rover Curiosity is driving toward a flat rock with pale veins that may hold clues to a wet history on the Red Planet. If the rock meets rover engineers’ approval when Curiosity rolls up to it in coming days, it will become the first to be drilled for a sample during the Mars Science Laboratory mission.

The size of a car, Curiosity is inside Mars’ Gale Crater investigating whether the planet ever offered an environment favorable for microbial life. Curiosity landed in the crater five months ago to begin its two-year prime mission. (more…)

Read More

Moths Wired Two Ways to Take Advantage of Floral Potluck

Moths are able to enjoy a pollinator’s buffet of flowers – in spite of being among the insect world’s picky eaters – because of two distinct “channels” in their brains, scientists at the University of Washington and University of Arizona have discovered.

One olfactory channel governs innate preferences of the palm-sized hawk moths that were studied – insects capable of traveling miles in a single night in search of favored blossoms. The other allows them to learn about alternate sources of nectar when their first choices are not available.

For moths, the ability to seek and remember alternate sources of food helps them survive harsh, food-deprived conditions. Scientists knew bees could learn, but this is the first proof that moths can too. (more…)

Read More

Yale’s New Microscope Brings Atoms’ Identities into Focus

Yale’s acquisition of a powerful new transmission electron microscope (TEM) is expected to transform researchers’ ability to examine and manipulate atom-scale materials and devices on campus.

The approximately $2 million, state-of-the-art microscope offers atomic resolution for both physical structure and chemical composition, as well as significantly faster processing times than other devices on campus. It is the first unit of this specific TEM model acquired for university laboratory use. (more…)

Read More

Nitrogen From Humans Pollutes Remote Lakes For More Than A Century

Nitrogen derived from human activities has polluted lakes throughout the Northern Hemisphere for more than a century and the fingerprint of these changes is evident even in remote lakes located thousands of miles from the nearest city, industrial area or farm.

The findings, published in the journal Science Dec. 16, are based on historical changes in the chemical composition of bottom deposits in 36 lakes using an approach similar to aquatic archeology. More than three quarters of the lakes, ranging from the U.S. Rocky Mountains to northern Europe, showed a distinctive signal of nitrogen released from human activities before the start of the 20th century, said Gordon Holtgrieve, a postdoctoral researcher at University of Washington School of Aquatic and Fishery Sciences and lead author of the report. The UW and a dozen other research institutions contributed to the research. (more…)

Read More