Tag Archives: calcium carbonate

15 million-year-old mollusk protein found

Washington, D.C.— A team of Carnegie scientists have found “beautifully preserved” 15 million-year-old thin protein sheets in fossil shells from southern Maryland. Their findings are published in the inaugural issue of Geochemical Perspectives Letters. (more…)

Read More

Liquid calcium carbonate

Geologist Adam Wallace reports in ‘Science’ that calcium carbonate has a dense liquid phase

Computer simulations could help scientists make sense of a recently observed and puzzling wrinkle in one of nature’s most important chemical processes. It turns out that calcium carbonate — the ubiquitous compound that is a major component of seashells, limestone, concrete, antacids and other naturally and industrially produced substances — may momentarily exist in liquid form as it crystallizes from solution.

“Our simulations suggest the existence of a dense liquid form of calcium carbonate,” said co-corresponding author Adam Wallace, an assistant professor of geological sciences in UD’s College of Earth, Ocean, and Environment who conducted the research while a postdoctoral researcher at the Lawrence Berkeley National Laboratory. “This is important because it is an as-yet unappreciated component of the carbon cycle.” (more…)

Read More

New Approach to Measuring Coral Growth Offers Valuable Tool for Reef Managers

Finds surprising growth patterns in the Florida Keys

ST. PETERSBURG, Fla. — A new more sensitive weight-based approach for monitoring coral growth in the wild has been developed by U.S. Geological Survey researchers leading to more definitive answers about the status of coral reefs.

Corals and other marine organisms build their skeletons and shells through calcification, the biological process of secreting calcium carbonate obtained from ocean water. This new approach to measuring corals can provide finer-scale resolution than traditional linear measurements of coral growth.  (more…)

Read More

Scientists Find Possible Solution to an Ancient Enigma

The widespread disappearance of stromatolites, the earliest visible manifestation of life on Earth, may have been driven by single-celled organisms called foraminifera.

The findings, by scientists at Woods Hole Oceanographic Institution (WHOI); Massachusetts Institute of Technology; the University of Connecticut; Harvard Medical School; and Beth Israel Deaconess Medical Center, Boston, were published online the week of May 27 in the Proceedings of the National Academy of Sciences. (more…)

Read More

UCLA study shows warming in central China greater than most climate models indicated

Temperatures in central China are 10 to 14 degrees Fahrenheit hotter today than they were 20,000 years ago, during the last ice age, UCLA researchers report — an increase two to four times greater than many scientists previously thought.

The findings, published on May 14, 2013, in the early online edition of the journal Proceedings of the National Academy of Sciences, could help researchers develop more accurate models of past climate change and better predict such changes in the future. (more…)

Read More

Researchers Find Unprecedented, Man-Made Trends in Oceans Acidity

Nearly one-third of CO2 emissions due to human activities enters the world’s oceans. By reacting with seawater, CO2 increases the water’s acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks, resulting in the potential loss of ecosystems. The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.

By combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions, resulting from the influence of human beings, over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22, 2012 online issue of Nature Climate Change. (more…)

Read More

Sea Cucumbers: Dissolving Coral Reefs?

Washington, D.C. — Coral reefs are extremely diverse ecosystems that support enormous biodiversity. But they are at risk. Carbon dioxide emissions are acidifying the ocean, threatening reefs and other marine organisms. New research led by Carnegie’s Kenneth Schneider analyzed the role of sea cucumbers in portions of the Great Barrier Reef and determined that their  dietary process of dissolving calcium carbonate (CaCO3) from the surrounding reef accounts for about half of at the total nighttime dissolution for the reef. The work is published December 23 by the Journal of Geophysical Research.

Reefs are formed through the biological deposition of calcium carbonate (CaCO3). Many of the marine organisms living on and around a reef contribute to either its destruction or construction. Therefore it is crucial that the amount of calcium carbonate remain in balance. When this delicate balance is disrupted, the reef ceases to grow and its foundations can be weakened. (more…)

Read More

Diamonds and Dust for Better Cement

Structural studies at Berkeley Lab’s Advanced Light Source could point to reduced carbon emissions and stronger cements

It’s no surprise that humans the world over use more water, by volume, than any other material. But in second place, at over 17 billion tons consumed each year, comes concrete made with Portland cement. Portland cement provides the essential binder for strong, versatile concrete; its basic materials are found in many places around the globe; and, at about $100 a ton, it’s relatively cheap. Making it, however, releases massive amounts of carbon dioxide, accounting for more than five percent of the total CO2 emissions from human activity.

“Portland cement is the most important building material in the world,” says Paulo Monteiro, a professor of civil and environmental engineering at the University of California at Berkeley, “but if we are going to find ways to use it more efficiently – or just as important, search for practical alternatives – we need a full understanding of its structure on the nanoscale.” To this end Monteiro has teamed with researchers at the U.S. Department of Energy’s Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. (more…)

Read More