Tag Archives: ocean acidification

Climate change alters the rules of sperm competition in the sea

The impact of climate change on global seawater conditions could change the rules of sperm competition for many important marine species, a pioneering new study has shown.

Researchers from the University of Exeter have shown that increasing ocean acidification, brought about by manmade carbon emissions, reduces sperm performance in a species of sea urchin, slowing down sperm in future ocean conditions. Interestingly, they found that different males were affected to different extents and that this could change the outcome when rival male ejaculates competed to fertilise a batch of eggs in the sea. (more…)

Read More

Coral and ocean acidification

UD professor’s sensor enables first carbonate ion concentration measurements inside coral

An interdisciplinary team of researchers led by University of Delaware professors Wei-Jun Cai and Mark Warner has successfully measured both pH and carbonate ion concentration directly inside the calcifying fluid found in coral, an important development in the study of how ocean acidification will affect marine calcifying organisms such as corals and shellfish. (more…)

Read More

Coral Reefs in Palau Surprisingly Resistant to Naturally Acidified Waters

Ocean researchers working on the coral reefs of Palau in 2011 and 2012 made two unexpected discoveries that could provide insight into corals’ resistance and resilience to ocean acidification, and aid in the creation of a plan to protect them.

The team collected water samples at nine points along a transect that stretched from the open ocean, across the barrier reef, into the lagoon and then into the bays and inlets around the Rock Islands of Palau, in the western Pacific Ocean. With each location they found that the seawater became increasingly acidic as they moved toward land. (more…)

Read More

Coastal sea change

UD oceanographer reports on human-caused changes to carbon cycling

Carbon dioxide pumped into the air since the Industrial Revolution appears to have changed the way the coastal ocean functions, according to a new analysis published this week in Nature.

A comprehensive review of research on carbon cycling in rivers, estuaries and continental shelves suggests that collectively this coastal zone now takes in more carbon dioxide than it releases. The shift could impact global models of carbon’s flow through the environment and future predictions related to climate change. (more…)

Read More

First global atlas of marine plankton reveals remarkable underwater world

Under the microscope, they look like they could be from another planet, but these microscopic organisms inhabit the depths of our oceans in nearly infinite numbers.

To begin to identify where, when, and how much oceanic plankton can be found around the globe, a group of international researchers have compiled the first ever global atlas cataloguing marine plankton ranging in size from bacteria to jellyfish. The atlas was published on July 19, 2013, in a special issue of the journal Earth System Science Data. (more…)

Read More

New Study Reveals How Sensitive U.S. East Coast Regions May Be to Ocean Acidification

A continental-scale chemical survey in the waters of the eastern U.S. and Gulf of Mexico is helping researchers determine how distinct bodies of water will resist changes in acidity. The study, which measures varying levels of carbon dioxide (CO2) and other forms of carbon in the ocean, was conducted by scientists from 11 institutions across the U.S. and was published in the journal Limnology and Oceanography.

“Before now, we haven’t had a very clear picture of acidification status on the east coast of the U.S.,” says Zhaohui ‘Aleck’ Wang, the study’s lead author and a chemical oceanographer at Woods Hole Oceanographic Institution (WHOI). “It’s important that we start to understand it, because increase in ocean acidity could deeply affect marine life along the coast and has important implications for people who rely on aquaculture and fisheries both commercially and recreationally.” (more…)

Read More

Mussels Cramped by Environmental Factors

The fibrous threads helping mussels stay anchored – in spite of waves that sometimes pound the shore with a force equivalent to a jet liner flying at 600 miles per hour – are more prone to snap when ocean temperatures climb higher than normal.

Emily Carrington, a University of Washington professor of biology, reported Saturday (Feb. 16) that the fibrous threads she calls “nature’s bungee cords” become 60 percent weaker in water that was 15 degrees F (7 C) above typical summer temperatures where the mussels were from. She spoke at the American Association for the Advancement of Science meeting in Boston. (more…)

Read More

Genetic Patterns of Deep-Sea Coral Provide Insights into Evolution of Marine Life

Patterns Also Shed Light on How Environmental Disturbances Affect Aquatic Organisms

The ability of deep-sea corals to harbor a broad array of marine life, including commercially important fish species, make these habitat-forming organisms of immediate interest to conservationists, managers, and scientists. Understanding and protecting corals requires knowledge of the historical processes that have shaped their biodiversity and biogeography.

While little is known about these processes, new research described in the journal Molecular Ecology helps elucidate the historical patterns of deep-sea coral migration and gene flow, coincident with oceanic circulation patterns and events. The investigators propose a scenario that could explain the observed evolutionary and present-day patterns in certain coral species. The findings can help scientists determine how climate change and other global processes have affected ocean habitats in the past and how they might do so in the future. (more…)

Read More