AUSTIN, Texas — In findings of relevance to conservationists and the fishing industry, new research links short-term reductions in growth and reproduction of marine animals off the California coast to increasing variability in the strength of coastal upwelling currents — currents that supply nutrients to the region’s diverse ecosystem. (more…)
Equipped with high-speed, high-resolution video, scientists have discovered important new information on how marine snail larvae swim, a key behavior that determines individual dispersal and ultimately, survival.
Researchers from the Woods Hole Oceanographic Institution (WHOI) and Stony Brook University grew Atlantic slipper limpet larvae, which are slightly larger than a grain of sand, and recorded microscopic video of them swimming. In previous studies, it has been commonly thought that larvae swim faster when they beat their hair-like cilia faster. However, this new microscopic video and research shows that this is not the case. (more…)
Scientists from the Woods Hole Oceanographic Institution (WHOI) have conducted a new study to measure levels of carbon at various depths in the Arctic Ocean. The study, recently published in the journal Biogeosciences, provides data that will help researchers better understand the Arctic Ocean’s carbon cycle—the pathway through which carbon enters and is used by the marine ecosystem. It will also offer an important point of reference for determining how those levels of carbon change over time, and how the ecosystem responds to rising global temperatures.
“Carbon is the currency of life. Where carbon is coming from, which organisms are using it, how they’re giving off carbon themselves—these things say a lot about how an ocean ecosystem works,” says David Griffith, the lead author on the study.“If warming temperatures perturb the Arctic Ocean, the way that carbon cycles through that system may change.” (more…)
An international research team is reporting the results of a research cruise they organized to study the amount, spread, and impacts of radiation released into the ocean from the tsunami-crippled reactors in Fukushima, Japan. The group of 17 researchers and technicians from eight institutions spent 15 days at sea in June 2011 studying ocean currents, and sampling water and marine organisms up to the edge of the exclusion zone around the reactors.
Led by Ken Buesseler, a senior scientist and marine chemist at the Woods Hole Oceanographic Institution (WHOI), the team found that the concentration of several key radioactive substances, or radionuclides, were elevated but varied widely across the study area, reflecting the complex nature of the marine environment. In addition, although levels of radioactivity in marine life sampled during the cruise were well below levels of concern for humans and the organisms themselves, the researchers leave open the question of whether radioactive materials are accumulating on the seafloor sediments and, if so, whether these might pose a long-term threat to the marine ecosystem.The results appear in the April 2 online edition of the journal Proceedings of the National Academy of Sciences (PNAS). (more…)
UD study assesses ocean use off Delaware, Maryland and New Jersey coasts
The Center for Carbon-Free Power Integration (CCPI) at the University of Delaware has issued a new report about ocean use off the coast of Delaware and parts of Maryland and New Jersey. The study addresses viable places to locate offshore wind farms, taking into account biological, ecological and other considerations. The report includes feedback from interested groups who attended a November 2011 workshop, as well as input from experts.
“This report demonstrates that the ocean is already active with ecological and human activity,” lead-author Alison Bates said. “It shows what government regulators ought to consider in planning for offshore wind development and the beginning of a way forward for offshore wind developers and existing users to accommodate one another.” (more…)
Nearly one-third of CO2 emissions due to human activities enters the world’s oceans. By reacting with seawater, CO2 increases the water’s acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks, resulting in the potential loss of ecosystems. The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.
By combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions, resulting from the influence of human beings, over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22, 2012 online issue of Nature Climate Change. (more…)
It’s not the satellites but the Elephant Seals who are now providing data and info about how quickly the Antarctic Ice caps shrinks and grows (among many other clues). As Seals are natural habitants of the Antarctic marine ecosystem, so they are providing the most valuable and sophisticated data which are 30 times more than conventional sources.
How we go about doing fishing? Yes, it’s about fishing. Every year about 20 million tons of fish are caught in nets that are not targeted for. These are ‘by-catches’ (extra, not the target fish), CNN reports via IUCN (International Union for Conservation of Nature).