Tag Archives: carbon nanotube

Super-fine Sound Beam could one Day be an Invisible Scalpel

ANN ARBOR — A carbon-nanotube-coated lens that converts light to sound can focus high-pressure sound waves to finer points than ever before. The University of Michigan engineering researchers who developed the new therapeutic ultrasound approach say it could lead to an invisible knife for noninvasive surgery.

Today’s ultrasound technology enables far more than glimpses into the womb. Doctors routinely use focused sound waves to blast apart kidney stones and prostate tumors, for example. The tools work primarily by focusing sound waves tightly enough to generate heat, says Jay Guo, a professor of electrical engineering and computer science, mechanical engineering, and macromolecular science and engineering. Guo is a co-author of a paper on the new technique published in the current issue of Nature’s journal Scientific Reports. (more…)

Read More

Super-Strong, High-Tech Material Found to be Toxic to Aquatic Animals by Researchers at MU and USGS

Carbon nanotubes hold promise for industry but need monitoring, say researchers

COLUMBIA, Mo. — Carbon nanotubes (CNTs) are some of the strongest materials on Earth and are used to strengthen composite materials, such as those used in high-performance tennis rackets. CNTs have potential uses in everything from medicine to electronics to construction. However, CNTs are not without risks. A joint study by the University of Missouri and United States Geological Survey found that they can be toxic to aquatic animals. The researchers urge that care be taken to prevent the release of CNTs into the environment as the materials enter mass production.

“The great promise of carbon nanotubes must be balanced with caution and preparation,” said Baolin Deng, professor and chair of chemical engineering at the University of Missouri. “We don’t know enough about their effects on the environment and human health. The EPA and other regulatory groups need more studies like ours to provide information on the safety of CNTs.” (more…)

Read More

Detecting Cancer with Lasers Has Limited Use, Say Mu Researchers

COLUMBIA, Mo. — One person dies every hour from melanoma skin cancer in the United States, according to the American Cancer Society. A technique known as photoacoustics can find some forms of melanoma even if only a few cancerous cells exist, but a recent study by University of Missouri researchers found that the technique was limited in its ability to identify other types of cancer. Attaching markers, called enhancers, to cancer cells could improve the ability of photoacoustics to find other types of cancer and could save lives thanks to faster diagnoses, but the technique is in its early stages.

“Eventually, a photoacoustic scan could become a routine part of a medical exam,” said Luis Polo-Parada, assistant professor of pharmacology and physiology and resident investigator at the MU Dalton Cardiovascular Research Center. “The technique doesn’t use X-rays like current methods of looking for cancer. It could also allow for much earlier detection of cancer. Now, a cancerous growth is undetectable until it reaches approximately one cubic centimeter in size. Photoacoustics could potentially find cancerous growths of only a few cells. Unfortunately, our research shows that, besides some cases of melanoma, the diagnostic use of photoacoustics still has major limitations. To overcome this problem, the use of photoacoustic enhancers like gold, carbon nanotubes or dyed nanoparticles is needed.” (more…)

Read More

Going Big

UD researchers report progress in development of carbon nanotube-based continuous fibers

The Chou research group in the University of Delaware’s College of Engineering recently reported on advances in carbon nanotube-based continuous fibers with invited articles in Advanced Materials and Materials Today, two high impact scientific journals.

According to Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, who co-authored the articles with colleagues Weibang Lu and Amanda Wu, there has been a concerted scientific effort over the last decade to “go big” – to translate the superb physical and mechanical properties of nanoscale carbon nanotubes to the macroscale. (more…)

Read More

The Weird World of “Remote Heating”

*UMD Researchers Discover Nanoscale Phenomena with Potential for Computer Speed Advances*

College Park, Md.– A team of University of Maryland scientists have discovered that when electric current is run through carbon nanotubes, objects nearby heat up while the nanotubes themselves stay cool, like a toaster that burns bread without getting hot. Understanding this completely unexpected new phenomenon could lead to new ways of building computer processors that can run at higher speeds without overheating.

“This is a new phenomenon we’re observing, exclusively at the nanoscale, and it is completely contrary to our intuition and knowledge of Joule heating at larger scales-for example, in things like your toaster,” says first author Kamal Baloch, who conducted the research while a graduate student at the University of Maryland. “The nanotube’s electrons are bouncing off of something, but not its atoms. Somehow, the atoms of the neighboring materials-the silicon nitride substrate-are vibrating and getting hot instead.” (more…)

Read More

Researchers Devise New Means For Creating Elastic Conductors

Researchers from North Carolina State University have developed a new method for creating elastic conductors made of carbon nanotubes, which will contribute to large-scale production of the material for use in a new generation of elastic electronic devices.

“We’re optimistic that this new approach could lead to large-scale production of stretchable conductors, which would then expedite research and development of elastic electronic devices,” says Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State, and lead author of a paper describing the new technique. (more…)

Read More