Tag Archives: electronic states

Surprising Control over Photoelectrons from a Topological Insulator

Berkeley Lab scientists discover how a photon beam can flip the spin polarization of electrons emitted from an exciting new material

Plain-looking but inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. Even at room temperature, a single chunk of TI is a good insulator in the bulk, yet behaves like a metal on its surface.

Researchers find TIs exciting partly because the electrons that flow swiftly across their surfaces are “spin polarized”: the electron’s spin is locked to its momentum, perpendicular to the direction of travel. These interesting electronic states promise many uses – some exotic, like observing never-before-seen fundamental particles, but many practical, including building more versatile and efficient high-tech gadgets, or, further into the future, platforms for quantum computing. (more…)

Read More

Solving a Spintronic Mystery:

*Berkeley Lab Researchers Resolve Controversy Over Gallium Manganese Arsenide that Could Boost Spintronic Performance*

A long-standing controversy regarding the semiconductor gallium manganese arsenide, one of the most promising materials for spintronic technology, looks to have been resolved. Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) in collaboration with scientist from University of Notre Dame have determined the origin of the charge-carriers responsible for the ferromagnetic properties that make gallium manganese arsenide such a hot commodity for spintronic devices. Such devices utilize electron spin rather than charge to read and write data, resulting in smaller, faster and much cheaper data storage and processing. (more…)

Read More