Tag Archives: three-dimensional

Natural 3D Counterpart to Graphene Discovered

Researchers at Berkeley Lab’s Advanced Light Source Find New Form of Quantum Matter

The discovery of what is essentially a 3D version of graphene – the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon – promises exciting new things to come for the high-tech industry, including much faster transistors and far more compact hard drives. A collaboration of researchers at the U.S Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered that sodium bismuthide can exist as a form of quantum matter called a three-dimensional topological Dirac semi-metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions in the interior or bulk of a material, a novel state that was only recently proposed by theorists. (more…)

Read More

MU Researchers Develop Advanced Three-Dimensional “Force Microscope”

Innovation could lead to faster drug therapies and increased understanding of proteins on the microscopic level

COLUMBIA, Mo. – Membrane proteins are the “gatekeepers” that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of “force microscopes” that are available to researchers and the one-dimensional results these microscopes reveal. Now, researchers at the University of Missouri have developed a three-dimensional microscope that will yield unparalleled study of membrane proteins and how they interact on the cellular level. These microscopes could help pharmaceutical companies bring drugs to market faster. (more…)

Read More

Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

Researchers from North Carolina State University, the University of North Carolina at Chapel Hill and Laser Zentrum Hannover have discovered that a naturally-occurring compound can be incorporated into three-dimensional (3-D) printing processes to create medical implants out of non-toxic polymers. The compound is riboflavin, which is better known as vitamin B2.

“This opens the door to a much wider range of biocompatible implant materials, which can be used to develop customized implant designs using 3-D printing technology,” says Dr. Roger Narayan, senior author of a paper describing the work and a professor in the joint biomedical engineering department at NC State and UNC-Chapel Hill. (more…)

Read More

Mating Swarm Study Offers New Way to View Flocks, Schools, Crowds

The adulthood of a midge fly is decidedly brief — about three days. But a new study of its mating swarm may yield lasting benefits for analyses of bird flocks, fish schools, human crowds and other forms of collective animal motion.

“This is a field where there’s been almost no quantitative data,” said Nicholas T. Ouellette of the Yale School of Engineering & Applied Science, principal investigator of the research, published Jan. 15 in the journal Scientific Reports. “What we’ve been able to do is put this in the laboratory, and that lets us take as much data as we want.” (more…)

Read More

Breakthrough Technique Images Breast Tumors in 3-D with Great Clarity, Reduced Radiation

Like cleaning the lenses of a foggy pair of glasses, scientists are now able to use a technique developed by UCLA researchers and their European colleagues to produce three-dimensional images of breast tissue that are two to three times sharper than those made using current CT scanners at hospitals. The technique also uses a lower dose of X-ray radiation than a mammogram.

These higher-quality images could allow breast tumors to be detected earlier and with much greater accuracy. One in eight women in the United States will be diagnosed with breast cancer during her lifetime.

The research is published the week of Oct. 22 in the early edition of the journal Proceedings of the National Academy of Sciences. (more…)

Read More

Brilliant 10

UD alumnus one of Popular Science magazine’s ‘Brilliant 10’ Young Scientists

University of Delaware alumnus Deva Ramanan has been named one of Popular Science magazine’s “Brilliant 10” Young Scientists.

The designation places Ramanan on the magazine’s annual “honor roll” of the 10 most promising scientist for 2012.

Ramanan, who earned his bachelor’s degree in computer engineering at UD in 2000, is an associate professor of computer science at the University of California Irvine (UCI). There he is working to improve a computer’s image recognition capability, or in simpler terms, a computer’s ability to “see people.” (more…)

Read More

UCLA Engineers Shed New Light on 3-D Motion of Human Sperm Cells

Using new lensless imaging platform, team observes rare helical movements

A team of researchers from the UCLA Henry Samueli School of Engineering and Applied Science has, for the first time, directly recorded the three-dimensional helical swimming patterns of human sperm cells.

The team, led by Aydogan Ozcan, associate professor of electrical engineering and bioengineering, developed a novel lensless computational imaging platform that accurately tracked more than 24,000 individual sperm cells in a large volume. This involved observing the individual rotations of each sperm cell, including helical movement patterns, rotation speed, and linear and curved distances traveled. (more…)

Read More