Tag Archives: platinum

Evolution of a Bimetallic Nanocatalyst

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multi-national lab collaboration led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases. (more…)

Read More

Within the Earth, Blobs of Molten Iron on the Move

New research by Yale University scientists suggests an explanation for the amount of iron in the Earth’s largest interior layer, the mantle: migrating “iron-rich blobs” generated by chemical interactions in the zone between the planet’s core and mantle.

Scientists have long known of the core’s rich iron content, but they have struggled to explain how the rocky mantle acquires iron in any abundance. The newly reported iron-enrichment process could also explain how other elements, such as platinum and hydrogen, get into the mantle, researchers said — attached to the iron. (more…)

Read More

Micro Fuel Cells Made of Glass — Power for Your iPad?

Engineers at Yale University have developed a new breed of micro fuel cell that could serve as a long-lasting, low-cost, and eco-friendly power source for portable electronic devices, such as tablet computers, smart phones, and remote sensors. The researchers describe the novel device in a paper published online in the journal Small.

An alternative to a battery, a fuel cell is an electrochemical device that combines hydrogen and oxygen to produce energy, giving off only water and heat as byproducts. But the materials and methods commonly used for making micro fuel cells are fragile, inefficient, and expensive. (more…)

Read More

The Best of Both Catalytic Worlds

Berkeley Lab Researchers Develop New Technique for Heterogenizing Homogenous Nano Catalysts

Catalysts are substances that speed up the rates of chemical reactions without themselves being chemically changed. Industrial catalysts come in two main types – heterogeneous, in which the catalyst is in a different phase from the reactants; and homogeneous, in which catalyst and the reactants are in the same phase. Heterogeneous catalysts are valued for their sustainability because they can be recycled. Homogeneous catalysts are valued for their product selectivity as their properties can be easily tuned through relatively simple chemistry.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have combined the best properties of both types of industrial catalysts by encapsulating nanoclusters of a metallic heterogeneous catalyst within the branched arms of the molecules known as dendrimers. (more…)

Read More

Nanoparticles Seen as Artificial Atoms

Berkeley Lab Researchers Observations of Nanorod Crystal Growth Points Way to Next Generation Energy Devices

In the growth of crystals, do nanoparticles act as “artificial atoms” forming molecular-type building blocks that can assemble into complex structures? This is the contention of a major but controversial theory to explain nanocrystal growth. A study by researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) may resolve the controversy and point the way to energy devices of the future.

Led by Haimei Zheng, a staff scientist in Berkeley Lab’s Materials Sciences Division, the researchers used a combination of transmission electron microscopy and advanced liquid cell handling techniques to carry out real-time observations of the growth of nanorods from nanoparticles of platinum and iron. Their observations support the theory of nanoparticles acting like artificial atoms during crystal growth. (more…)

Read More

Hydrogen from Acidic Water: Berkeley Lab Researchers Develop a Potential Low Cost Alternative to Platinum for Splitting Water

A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts. (more…)

Read More

Exeter Academic Explains Chemical ‘Risk List’

*A University of Exeter academic has spoken about the many chemical elements we rely on that are at risk.*

*Professor Frances Wall, Head of the University’s Camborne School of Mines, joined a panel of experts at the British Science Festival to reveal the new chemical ‘risk list’.*

To coincide with the British Science Festival, the British Geological Survey (BGS) has released a new ‘risk list’, which ranks the risk to global supply of chemical elements of economic value. The list highlights vulnerable elements where global production is concentrated in a small number of countries, including metals that are critical to development of a low-carbon digital economy. The list helps to focus future research on diversifying supply from new resources, using greener production technologies and cost-effective recycling.

Professor Frances Wall, Head of Camborne School of Mines (CSM) explained how the University of Exeter is already engaged in tackling this challenge. She said: “There are a wide range of potential deposits around the world that could be mined, which would take away the monopoly of current suppliers of these metals. For example, new research in Malawi carried out by CSM is looking at resources of critical metals associated with rocks known as carbonatites (an igneous form of calcium carbonate).” (more…)

Read More