Tag Archives: hhmi

Programmable DNA Scissors Found for Bacterial Immune System

Discovery Could Lead to Editing Tool for Genomes

Genetic engineers and genomics researchers should welcome the news from the Lawrence Berkeley National Laboratory (Berkeley Lab) where an international team of scientists has discovered a new and possibly more effective means of editing genomes. This discovery holds potentially big implications for advanced biofuels and therapeutic drugs, as genetically modified microorganisms, such as bacteria and fungi, are expected to play a key role in the green chemistry production of these and other valuable chemical products.

Jennifer Doudna, a biochemist with Berkeley Lab’s Physical Biosciences Division and professor at the University of California (UC) Berkeley, helped lead the team that identified a double-RNA structure responsible for directing a bacterial protein to cleave foreign DNA at specific nucleotide sequences. Furthermore, the research team found that it is possible to program the protein with a single RNA to enable cleavage of essentially any DNA sequence. (more…)

Read More

Exciting New Field of Bioorthogonal Chemistry Owes a Debt to Curiosity-Driven Research from Previous Eras

*Carolyn Bertozzi’s Kavli Lecture Highlights Promise of Biorothogonal Chemistry and Its Links to Basic Research From the Past*

“Bioorthogonal chemistry is literally chemistry for life,” said Carolyn Bertozzi, an internationally acclaimed leader and founder of this emerging and highly promising field of science that could fundamentally change drug development and disease diagnostics. In delivering the Kavli Foundation Innovations in Chemistry Lecture at this year’s Spring Meeting of the American Chemical Society (ACS) in San Diego, Bertozzi described how her own ground-breaking research made use of experiments nearly a century ago by two German chemists whose work was driven primarily by scientific curiosity as opposed to the more problem-driven research of today.

Bertozzi is a senior faculty scientist with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the T.Z. and Irmgard Chu Distinguished Professor of Chemistry and Professor of Molecular and Cell Biology at the University of California (UC) Berkeley. She is also an investigator with the Howard Hughes Medical Institute (HHMI). The Kavli Foundation is a philanthropic organization that supports basic scientific research. Its ACS lectures are designed to address “the urgent need for vigorous, outside the box thinking by scientists.” (more…)

Read More

Hydrogen from Acidic Water: Berkeley Lab Researchers Develop a Potential Low Cost Alternative to Platinum for Splitting Water

A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts. (more…)

Read More

Berkeley Lab Scientists Develop New Tool for the Study of Spatial Patterns in Living Cells

*Golden Membranes Pave the Way for a Better Understanding of Cancer and the Immune System*

Football has often been called “a game of inches,” but biology is a game of nanometers, where spatial differences of only a few nanometers can determine the fate of a cell – whether it lives or dies, remains normal or turns cancerous. Scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new and better way to study the impact of spatial patterns on living cells.

Berkeley Lab chemist Jay Groves led a study in which artificial membranes made up of a fluid bilayer of lipid molecules were embedded with fixed arrays of gold nanoparticles to control the spacing of proteins and other cellular molecules placed on the membranes. This provided the researchers with an unprecedented opportunity to study how the spatial patterns of chemical and physical properties on membrane surfaces influence the behavior of cells. (more…)

Read More