Tag Archives: damage

Study finds climate change damages U.S. economy, increases inequality

Unmitigated climate change will make the United States poorer and more unequal, with the poorest third of U.S. counties projected to sustain economic damages costing as much as 20 percent of their income if warming proceeds unabated, according to a new study published in the journal Science. (more…)

Read More

Sensor in eye could track pressure changes, monitor for glaucoma

Your eye could someday house its own high-tech information center, tracking important changes and letting you know when it’s time to see an eye doctor.

University of Washington engineers have designed a low-power sensor that could be placed permanently in a person’s eye to track hard-to-measure changes in eye pressure. The sensor would be embedded with an artificial lens during cataract surgery and would detect pressure changes instantaneously, then transmit the data wirelessly using radio frequency waves. (more…)

Read More

UW startup creates underwater robotics with a human touch

It should be just as easy to use a robotic arm as it is to use your own hand. That’s the thinking behind University of Washington startup BluHaptics, which is taking telerobotics — controlling robots from a distance — to a new level: underwater.

Using technology developed by Howard Chizeck’s lab in the Department of Electrical Engineering, a team of UW scientists and engineers working at the Applied Physics Laboratory is creating a control system for underwater remotely operated vehicles, or ROVs. (more…)

Read More

Berkeley Lab Startup Wants to Know How Damaged Your DNA Is

Exogen can check the DNA health not only of an individual but that of an entire region, thus answering questions on the impact of environmental events.

Currently if a scientist or doctor wanted to measure the level of a person’s DNA damage, they would have to look at some cells in a fluorescent microscope and manually count the number of DNA breaks. This kind of counting is labor-intensive, time-consuming, and a highly subjective process. Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Sylvain Costes, who has spent over a decade studying the effects of low-dose radiation on cellular processes, came up with a way to automate the job using a proprietary algorithm and a machine to scan specimens and objectively score the damaged DNA. (more…)

Read More

Help for a scarred heart: Scarring cells turned to beating muscle

Poets and physicians know that a scarred heart cannot beat the way it used to, but the science of reprogramming cells offers hope—for the physical heart, at least.

A team of University of Michigan biomedical engineers has turned cells common in scar tissue into colonies of beating heart cells. Their findings could advance the path toward regenerating tissue that’s been damaged in a heart attack. (more…)

Read More

Pesticides and Parkinson’s: UCLA Researchers Uncover Further Proof of a Link

Study suggests potential new target in fight against debilitating disease

For several years, neurologists at UCLA have been building a case that a link exists between pesticides and Parkinson’s disease. To date, paraquat, maneb and ziram — common chemicals sprayed in California’s Central Valley and elsewhere — have been tied to increases in the disease, not only among farmworkers but in individuals who simply lived or worked near fields and likely inhaled drifting particles.

Now, UCLA researchers have discovered a link between Parkinson’s and another pesticide, benomyl, whose toxicological effects still linger some 10 years after the chemical was banned by the U.S. Environmental Protection Agency. (more…)

Read More

Another Muscular Dystrophy Mystery Solved; MU Scientists Inch Closer to a Therapy for Patients

COLUMBIA, Mo. — Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri scientists found a molecular compound that is vital to curing the disease, but they didn’t know how to make the compound bind to the muscle cells. In a new study, published in the Proceedings of the National Academies of Science, MU School of Medicine scientists Yi Lai and Dongsheng Duan have discovered the missing pieces to this puzzle that could ultimately lead to a therapy and, potentially, a longer lifespan for patients suffering from the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin, a protein essential for muscle cell survival and function. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. While dystrophin is vital for muscle development, the protein also needs several “helpers” to maintain the muscle tissue. One of these “helper” molecular compounds is nNOS, which produces nitric oxide that can keep muscle cells healthy after exercise. (more…)

Read More