Tag Archives: molecular compound

Another Muscular Dystrophy Mystery Solved; MU Scientists Inch Closer to a Therapy for Patients

COLUMBIA, Mo. — Approximately 250,000 people in the United States suffer from muscular dystrophy, which occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Three years ago, University of Missouri scientists found a molecular compound that is vital to curing the disease, but they didn’t know how to make the compound bind to the muscle cells. In a new study, published in the Proceedings of the National Academies of Science, MU School of Medicine scientists Yi Lai and Dongsheng Duan have discovered the missing pieces to this puzzle that could ultimately lead to a therapy and, potentially, a longer lifespan for patients suffering from the disease.

Duchenne muscular dystrophy (DMD), predominantly affecting males, is the most common type of muscular dystrophy. Patients with Duchenne muscular dystrophy have a gene mutation that disrupts the production of dystrophin, a protein essential for muscle cell survival and function. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death. While dystrophin is vital for muscle development, the protein also needs several “helpers” to maintain the muscle tissue. One of these “helper” molecular compounds is nNOS, which produces nitric oxide that can keep muscle cells healthy after exercise. (more…)

Read More

Researchers Report Potential New Treatment to Stop Alzheimer’s Disease

Molecular ‘tweezers’ break up toxic aggregations of proteins in mouse model

Last March, researchers at UCLA reported the development of a molecular compound called CLR01 that prevented toxic proteins associated with Parkinson’s disease from binding together and killing the brain’s neurons.

Building on those findings, they have now turned their attention to Alzheimer’s disease, which is thought to be caused by a similar toxic aggregation or clumping, but with different proteins, especially amyloid-beta and tau. (more…)

Read More