Tag Archives: cellular mechanism

Brighter, Smaller Probes to Uncover the Secret Lives of Proteins

Berkeley Lab scientists create nanoparticle probes that may lead to a better understanding of diseases

Imagine tracking a deer through a forest by clipping a radio transmitter to its ear and monitoring the deer’s location remotely. Now imagine that transmitter is the size of a house, and you understand the problem researchers may encounter when they try to use nanoparticles to track proteins in live cells.

Understanding how a protein moves around a cell helps researchers understand the protein’s function and the cellular mechanisms for making and processing proteins. This information also helps researchers study disease, which at a cellular level may mean that a protein is malfunctioning, stops being made, or is sent to the wrong part of the cell. But nanoparticle probes that are too big can disrupt a protein’s normal activities. (more…)

Read More

Molecular Duo Dictate Weight and Energy Levels, Yale Researchers Find

Yale University researchers have discovered a key cellular mechanism that may help the brain control how much we eat, what we weigh, and how much energy we have.

The findings, published in the Feb. 28 issue of the Journal of Neuroscience, describe the regulation of a family of cells that project throughout the nervous system and originate in an area of the brain call the hypothalamus, which has been long known to control energy balances. (more…)

Read More

Free Radicals Crucial To Suppressing Appetite

Obesity is growing at alarming rates worldwide, and the biggest culprit is overeating. In a study of brain circuits that control hunger and satiety, Yale School of Medicine researchers have found that molecular mechanisms controlling free radicals-molecules tied to aging and tissue damage-are at the heart of increased appetite in diet-induced obesity.

Published Aug. 28 in the advanced online issue of Nature Medicine, the study found that elevating free radical levels in the hypothalamus directly or indirectly suppresses appetite in obese mice by activating satiety-promoting melanocortin neurons. Free radicals, however, are also thought to drive the aging process. (more…)

Read More